

NASA

Procedural

Requirements

NPR 7150.2D

Effective Date: March 8, 2022

Expiration Date: March 8, 2027

Subject: NASA Software Engineering Requirements

Responsible Office: Office of the Chief Engineer

Table of Contents

Preface

P.1 Purpose

P.2 Applicability

P.3 Authority

P.4 Applicable Documents and Forms

P.5 Measurement/Verification

P.6 Cancellation

Chapter 1. Introduction

1.1 Overview

1.2 Hierarchy of NASA Software-Related Engineering and Program/Project Documents

1.3 Document Structure

Chapter 2. Roles, Responsibilities, and Principles Related to Tailoring of the Requirements

2.1 Roles and Responsibilities

2.2 Principles Related to Tailoring of the Requirements

Chapter 3. Software Management Requirements

3.1 Software Life Cycle Planning

3.2 Software Cost Estimation

3.3 Software Schedules

3.4 Software Training

3.5 Software Classification Assessments

3.6 Software Assurance and Software Independent Verification & Validation

3.7 Safety-Critical Software

3.8 Automatic Generation of Software Source Code

3.9 Software Development Processes and Practices

3.10 Software Reuse

3.11 Software Cybersecurity

3.12 Software Bi-Directional Traceability

Chapter 4. Software Engineering (Life Cycle) Requirements

4.1 Software Requirements

4.2 Software Architecture

4.3 Software Design

4.4 Software Implementation

4.5 Software Testing

4.6 Software Operations, Maintenance, and Retirement

Chapter 5. Supporting Software Life Cycle Requirements

5.1 Software Configuration Management

5.2 Software Risk Management

5.3 Software Peer Reviews/Inspections

5.4 Software Measurements

http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter1
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter1
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter3
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter3
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter4
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter4

5.5 Software Non-conformance or Defect Management

Chapter 6. Recommended Software Documentation Contents

6.1 Software Engineering Products

6.2 Software Engineering Product Content

List of Appendices

Appendix A. Definitions

Appendix B. Acronyms

Appendix C. Requirements Mapping Matrix

Appendix D. Software Classifications

Appendix E. References

List of Figures

Figure 1. NASA Software Classification Structure

List of Tables

Table 1. Bi-directional traceability by software classification

Table 2. Requirements Mapping Matrix

 1

Preface

P.1 PURPOSE

Software engineering is a core capability and key enabling technology for NASA’’s missions and

supporting infrastructure. This NASA Procedural Requirement (NPR) establishes the engineering

requirements for software acquisition, development, maintenance, retirement, operations, and

management consistent with the governance model contained in NASA Policy Directive (NPD)

1000.0, NASA Governance and Strategic Management Handbook. This NASA Procedural

Requirements (NPR) supports the implementation of NPD 7120.4, NASA Engineering and

Program/Project Management Policy.

P.2 APPLICABILITY

a. This NPR applies to NASA Headquarters (HQ) and NASA Centers, including Component

Facilities and Technical and Service Support Centers. This language applies to the Jet Propulsion

Laboratory (JPL) (a Federally Funded Research and Development Center (FFRDC)), other

contractors, grant recipients, or parties to cooperative agreements and other agreements only to the

extent specified or referenced in the appropriate contracts, grants, or agreements.

Note: The above statement alone is not sufficient to stipulate requirements for the contractor,

grant recipient, or agreement. This NPR provides requirements for NASA contracts, grant

recipients, or agreements to the responsible NASA project managers, contracting officers, and

the contracting officers representatives that are made mandatory through contract clauses,

specifications, or statements of work (SOWs) in conformance with the NASA Federal

Acquisition Regulation (FAR) Supplement or by stipulating in the contracts, grants, or

agreements which of the NPR requirements apply.

b. This NPR applies to the complete software development life cycle, including software planning,

development, testing, maintenance, retirement, operations, management, acquisition, and

assurance activities. The requirements of this directive cover such software created, acquired, or

maintained by NASA or for NASA to the extent specified or referenced in an appropriate contract,

grant, or cooperative agreement. The applicability of these requirements to specific systems and

subsystems within the Agency’s investment areas, programs, and projects is through the use of the

NASA-wide definition of software classes, defined in Appendix D. Some projects may contain

multiple software systems and software subsystems having different software classes. For this

directive, software is defined in Appendix A, and includes software executing on processors

embedded in programmable logic devices.

 2

Figure 1. NASA software classification structure.

c. For existing Class A through E programs and projects, the software engineering requirements of

this NPR apply to their current and future phases as determined by the responsible Mission

Directorate as approved by the NASA Chief Engineer (or as delegated).

d. For existing Class F programs and projects, the software engineering requirements of this NPR

apply to their current and future phases as determined by the Center Chief Information Officer

(CIO) and approved by the NASA CIO (or delegate).

e. This NPR can be applied to other NASA investments at the discretion of the responsible

manager or the NASA Associate Administrator. This NPR is not retroactively applicable to

software development, maintenance, operations, management, acquisition, and assurance activities

started before the effective date of this NPR (i.e., existing systems and subsystems containing

software for the International Space Station, Hubble, Chandra, etc.).

f. This NPR does not supersede more stringent requirements imposed by individual NASA

organizations and other Federal Government agencies or by Federal law.

g. In this NPR, all mandatory actions (i.e., requirements) are denoted by statements containing the

term “shall,” followed by a software engineering (SWE) requirement number. The terms “may” or

“can” denote discretionary privilege or permission, “should” denotes a good practice and is

NASA-Wide Software Classifications

Class A Human-Rated Space Software Systems

Class B Non-Human Space-Rated Software Systems or Large-Scale

Aeronautics Vehicles

Class C Mission Support Software or Aeronautic Vehicles, or Major

Engineering/Research Facility Software

Class D Basic Science/Engineering Design and Research and

Technology Software

Class E Design Concept, Research, Technology and General Purpose

Software

Class F General Purpose Computing, Business and IT Software

Notes: It is not uncommon for a project to contain multiple systems and subsystems

having different software classes.

 3

recommended but not required, “will” denotes expected outcome, and “are/is” denotes descriptive

material.

h. In this NPR, all document citations are assumed to be the latest version unless otherwise noted.

P.3 AUTHORITY

a. The National Aeronautics and Space Act, as amended, 51 U.S.C. § 20113(a).

b. NPD 1000.0, NASA Governance and Strategic Management Handbook.

c. NPD 1000.3, The NASA Organization.

d. NPD 1000.5, Policy for NASA Acquisition.

e. NPD 7120.4, NASA Engineering and Program/Project Management Policy.

P.4 APPLICABLE DOCUMENTS AND FORMS

a. NPD 1210.2, NASA Surveys, Audits, and Reviews Policy.

b. NPD 1600.2, NASA Security Policy.

c. NPD 2091.1, Inventions Made By Government Employees.

d. NPD 2800.1, Managing Information Technology.

e. NPR 1600.1, NASA Security Program Procedural Requirements.

f. NPR 2800.2, Information and Communication Technology Accessibility.

g. NPR 2810.1, Security of Information Technology.

h. NPR 7120.5, NASA Space Flight Program and Project Management Requirements.

i. NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and

Project Management Requirements.

j. NPR 7120.8, NASA Research and Technology Program and Project Management Requirements.

k. NPR 8705.2, Human-Rating Requirements for Space Systems.

l. NPR 8705.4, Risk Classification for NASA Payloads.

m. NPR 8715.3, NASA General Safety Program Requirements.

n. NASA-STD-1006, Space System Protection Standard.

o. NASA-STD-8739.8, Software Assurance and Software Safety Standard.

p. NASA-HDBK-2203, NASA Software Engineering Handbook.

P.5 MEASUREMENT/VERIFICATION

Implementation of this directive is defined as implementing all the identified processes, activities,

and requirements in accordance with the software classification and approved software tailoring.

Compliance with this NPR is verified by submission of the completed Requirements Mapping

Matrix(ces) to responsible NASA officials, including any approved tailoring (see Appendix C) and

 4

by internal and external controls. Internal controls processes are defined in NPD 1200.1, NASA

Internal Control. Internal controls include surveys, audits, and reviews conducted in accordance

with NPD 1210.2, NASA Surveys, Audits, and Reviews Policy. External controls may include

external surveys, audits, and reporting or contractual requirements.

P.6 CANCELLATION

a. NPR 7150.2C, NASA Software Engineering Requirements, dated August 02, 2019.

b. NASA Interim Directive 7150-113: NASA Interim Directive for Software License

Management, dated June 13, 2017.

Chapter 1: Introduction

1.1 Overview

1.1.1 This directive imposes requirements on procedures, design considerations, activities, and

tasks used to acquire, develop, maintain, operate, retire, and manage applicable software. This

directive is a designed set of requirements for protecting the ’Agency’s investment in software

engineering products and fulfilling our responsibility to the citizens of the United States (U.S.).

1.1.2 The requirements in this directive have been extracted from industry standards and proven

NASA experience in software engineering. Centers and software developers may show that many

of the requirements are satisfied through existing programs, procedures, and processes.

1.1.3 The Agency makes significant investments in software engineering to support the Agency’s

investment areas: Space Flight, Aeronautics, Research and Technology, Information Technology

(IT), and Institutional Infrastructure. NASA ensures that programs, projects, systems, and

subsystems that use software follow a standard set of requirements. One of the goals of this

directive is to bring the Agency’s engineering and software development and management

communities together to optimize resources and talents across Center boundaries. For NASA to

effectively communicate and work seamlessly across Centers, a common framework of generic

requirements is needed. This directive fulfills this need for the Agency within the discipline of

software engineering.

1.1.4 This directive does not require a specific software life cycle model. Where this NPR refers to

phases and milestone reviews in the software life cycle, it uses the standard NASA life cycle

models described in NPR 7120.5, NASA Space Flight Program and Project Management

Requirements, NPR 7120.7, NASA Information Technology Program and Project Management

Requirements, and NPR 7120.8, NASA Research and Technology Program and Project

Management Requirements, as supported by milestone reviews described in NPR 7123.1, NASA

Systems Engineering Processes and Requirements.

1.1.5 NASA is committed to instituting and updating these requirements to meet the Agency’s

current and future challenges in software engineering. Successful experiences are codified in

updated versions of this directive after experience has been gained through its use within the

 5

NASA software community, the collection of lessons learned from projects, and the

implementation records of the Engineering Technical Authorities (ETAs).

1.2 Hierarchy of NASA Software-Related Engineering and Program/Project Documents

1.2.1 Agency-Level Software Policies and Requirements

NPD 7120.4, NASA Engineering and Program/Project Management Policy, is an overarching

directive that establishes top-level policies for all software created, acquired, or maintained by or

for NASA, including Commercial-off-the-shelf (COTS) software, Government-off-the-shelf

(GOTS) software, and Modified-off-the-shelf (MOTS) software and open-source software,

embedded software, reused software, legacy software, and heritage software. This directive

supports the implementation of NPD 7120.4, and establishes the Agency set of software

engineering requirements for software acquisition, development, maintenance, retirement,

operations, and management. It provides a set of software engineering requirements in generic

terms for use by NASA, contractors, grant recipients, or parties to agreements. Additional

Agency-level project management requirements and systems engineering requirements exist that

influence and affect the software development activities on a project. In the event of a conflict

between an NPD and NPR, the NPD takes precedence.

1.2.2 Agency-Level Multi-Center and Product Line Requirements (non-software specific)

Existing Agency-Level NPDs and NPRs elaborate, tailor, and in some cases add requirements to

those above to address the needs of major multi-Center projects, specific product lines, and

specific focus areas. Examples of representative NPRs in this category are NPR 8705.2, Human-

Rating Requirements for Space Systems, NPR 8715.3, NASA General Safety Program

Requirements, NPR 8735.2, Hardware Quality Assurance Program Requirements for Programs

and Projects, NPR 7120.5, NPR7123.1, NPD 2800.1, Managing Information Technology, NPR

2800.2, Information and Communication Technology Accessibility, and NPR 2810.1, Security of

Information Technology.

1.2.3 Center-Level Directives or Requirements (related to software)

Center-level directives or requirements are developed by NASA Centers to document their local

software policies, requirements, and procedures. These directives are responsive to the higher-

level requirements while addressing the specific application areas and the Center’s mission within

the Agency. In the event of a conflict between this NPR with a Center-level directive, the

information provided in this NPR takes precedence.

1.3 Document Structure

1.3.1 Chapter 2 describes the roles, responsibilities, and institutional requirements relevant to the

requirements in this directive. This chapter describes the responsibilities for maintaining and

advancing organizational capability in software engineering practices to effectively meet the

scientific and technological objectives of the Agency. It defines the roles and responsibilities of

key officials in software engineering management, the software development and management

processes, and the software life cycle management processes. Specific software classification

 6

applicability, if any, for the requirements in Chapter 2 are contained in the requirement wording.

The requirements in Chapter 2 are not part of the Requirements Mapping Matrix in Appendix C.

Approval of any tailoring of requirements designated in Chapter 2 can be done by the appropriate

organization per the defined roles and responsibilities.

1.3.2 Chapter 3 establishes software management requirements. The software management

activities define and control the many software aspects of a project from beginning to end. The

software management activities include the required interfaces to other organizations,

determination of deliverables, cost estimates, tracking of schedules, risk management, formal and

informal reviews, as well as other forms of verification and validation, and determination of the

amount of supporting services. The planned management of these activities is captured in one or

more software or system plans.

1.3.3 Chapter 4 provides the software engineering life cycle requirements. This directive makes no

recommendation for a specific software life cycle model. Each has its strengths and weaknesses,

and no one model is best for every situation. Whether using the agile methods, spiral model, the

iterative model, waterfall, or any other development life cycle model, each has its own set of

requirements, design, implementation, testing, release to operations, maintenance, and retirement.

Although this directive does not impose a particular life cycle model on each software project, it

does support a standard set of life cycle phases. Use of the different phases of a life cycle allows

the various products of a project to be gradually developed and matured from initial concepts

through the fielding of the product and to its final retirement.

1.3.4 Chapter 5 provides supporting software life cycle requirements. Unlike development

processes, support processes are not targeted primarily at a specific phase of the project life cycle

but typically occur with similar intensity throughout the complete project or product life cycle. For

example, normal configuration management baselines (e.g., requirements, code, and products)

happen across the life cycle, as does cybersecurity. Support processes are software management

and engineering processes that support the entire software life cycle: Software Configuration

Management, Risk Management, Peer Reviews, Inspections, Software Measurement, and Non-

conformance and Defect Management.

1.3.5 Chapter 6 provides a list of the recommended software records.

1.3.6 Appendix A provides definitions.

1.3.7 Appendix B provides acronyms used in this directive.

1.3.8 Appendix C contains the Requirements Mapping Matrix.

1.3.9 Appendix D contains software classifications.

1.3.10 Appendix E contains software references for this directive.

 7

Chapter 2. Roles, Responsibilities, and Principles Related to Tailoring of the

Requirements

2.1 Roles and Responsibilities Associated with this Directive

2.1.1 The NASA Office of the Chief Engineer (OCE).

2.1.1.1 The NASA OCE shall lead and maintain a NASA Software Engineering Initiative to

advance software engineering practices. [SWE-002]

2.1.1.2 The NASA OCE shall periodically benchmark each Center’s software engineering

capability against requirements in this directive. [SWE-004]

Note: Capability Maturity Model® Integration (CMMI®) for Development (CMMI®-DEV)

appraisals are the preferred benchmarks for objectively measuring progress toward software

engineering process improvement at NASA Centers.

2.1.1.3 The NASA OCE shall periodically review the project requirements mapping matrices.

[SWE-152]

2.1.1.4 The NASA OCE shall authorize appraisals against selected requirements in this NPR to

check compliance. [SWE-129]

2.1.1.5 The NASA OCE and Center training organizations shall provide training to advance

software engineering practices. [SWE-100]

2.1.1.6 The NASA OCE shall maintain an Agency-wide process asset library of applicable best

practices and process templates for all size projects. [SWE-098]

2.1.2 NASA Chief, Safety and Mission Assurance (SMA).

2.1.2.1 The NASA Chief, SMA manages Agency software assurance policy and software safety
policies and is the Technical Authority (TA) for any requirements in this directive.

2.1.2.2 The NASA Chief, SMA shall lead and maintain a NASA Software Assurance and

Software Safety Initiative to advance software assurance and software safety practices. [SWE-208]

2.1.2.3 The NASA Chief, SMA shall periodically benchmark each Center’s software assurance

and software safety capabilities against the NASA-STD-8739.8, NASA Software Assurance and

Software Safety Standard. [SWE-209]

2.1.2.4 The NASA Chief, SMA shall periodically review the project’s requirements mapping

matrices. [SWE-212]

2.1.2.5 The NASA Chief, SMA shall authorize appraisals against selected requirements in this

NPR to check compliance. [SWE-221]

 8

2.1.2.6 The NASA Chief, SMA shall provide for software assurance training. [SWE-222]

2.1.2.7 The NASA Chief, SMA shall make the final decision on all proposed tailoring of SWE-
141, the Independent Verification and Validation (IV&V) requirement. [SWE-223]

2.1.3 NASA Chief, Office of Chief Information Officer (OCIO)

2.1.3.1 The NASA OCIO Senior Agency Information Security Officer (SAISO) will conduct

security assessments and appraisals on selected requirements in this NPR to check compliance.

2.1.3.2 The NASA OCIO SAISO will participate in any software development reviews, as needed.

2.1.4 Chief Health and Medical Officer (CHMO)

2.1.4.1 The CHMO is the TA for any requirements which impact health and medical aspects.

2.1.4.2 The CHMO has approval authority of tailoring of software with health and medical

implications as documented in NPR 7120.11, Health and Medical Technical Authority

Implementation.

2.1.5 Center Director

2.1.5.1 In this directive, the phrase “the Center Directors shall...” means that the roles and
responsibilities of the Center Directors may be further delegated within the organization consistent
with the scope and scale of the system.

2.1.5.2 Center Director, or designee, shall maintain, staff, and implement a plan to continually
advance the Center’s in-house software engineering capability and monitor the software
engineering capability of NASA’s contractors. [SWE-003]

Note: The recommended practices and guidelines for the content of a Center Software
Engineering Improvement Plan are defined in NASA-HDBK-2203, NASA Software
Engineering Handbook. Each Center has a current Center Software Engineering Improvement
Plan on file in the NASA Chief Engineer’s office.

2.1.5.3 Center Director, or designee, shall establish, document, execute, and maintain software

processes per the requirements in this directive. [SWE-005]

2.1.5.4 Center Director, or designee, shall comply with the requirements in this directive that are

marked with an “X” in Appendix C. [SWE-140]

Note: The responsibilities for approving changes in the requirements for a project is listed for

each requirement in the requirement mapping matrix. When the requirement and software

class are marked with an “X,” the projects will record the risk and rationale for any

requirement that is not completely implemented by the project. The projects can document

their related mitigations and risk acceptance in the approved Requirements Mapping Matrix.

Project relief from the applicable cybersecurity requirements, Section 3.11, Software

 9

Cybersecurity, has to include an agreement from the SAISO or Center CISO, as designated by

the SAISO. The NASA Agency CIO, or Center CIO designee, has institutional authority on all

Class F software projects.

2.1.5.5 The Center Director, or designee, shall report on the status of the Center’s software

engineering discipline, as applied to its projects, upon request by the OCE, OSMA, or OCHMO.

[SWE-095]

2.1.5.6 Center Director, or designee, shall maintain a reliable list of their Center’s programs and

projects containing Class A, B, C, and D software. The list should include: [SWE-006]

a. Project/program name and Work Breakdown Structure (WBS) number.

b. Software name(s) and WBS number(s).

c. Software size estimate (report in Kilo/Thousand Source Lines of Code (KSLOCs)).

d. The phase of development or operations.

e. Software Class or list of the software classes being used on the project.

f. Software safety-critical status.

g. For each Computer Software Configuration Item (CSCI)/Major System containing Class A, B,

or C software, provide:

(1) The name of the software development organization.

(2) Title or brief description of the CSCI/Major System.

(3) The estimated total KSLOCs, the CSCI/Major System, represents.

(4) The primary programming languages used.

(5) The life cycle methodology on the software project.

(6) Name of responsible software assurance organization(s).

2.1.5.7 For Class A, B, and C software projects, the Center Director, or designee, shall establish

and maintain a software measurement repository for software project measurements containing at

a minimum: [SWE-091]

a. Software development tracking data.

b. Software functionality achieved data.

c. Software quality data.

 10

d. Software development effort and cost data.

2.1.5.8 For Class A, B, and C software projects, the Center Director, or designee, shall utilize

software measurement data for monitoring software engineering capability, improving software

quality, and to track the status of software engineering improvement activities. [SWE-092]

2.1.5.9 Center Director, or designee, will maintain and implement software training to advance its

in-house software engineering capabilities.

2.1.5.10 For Class A, B, and C software projects, each Center Director, or designee, shall establish

and maintain software cost repository(ies) that contains at least the following measures: [SWE-

142]

a. Planned and actual effort and cost.

b. Planned and actual schedule dates for major milestones.

c. Both planned and actual values for key cost parameters that typically include software size,

requirements count, defects counts for maintenance or sustaining engineering projects, and cost

model inputs.

d. Project descriptors or metadata that typically includes software class, software domain/type, and

requirements volatility.

2.1.5.11 Each Center Director, or designee, shall contribute applicable software engineering

process assets in use at his/her Centers to the Agency-wide process asset library. [SWE-144]

2.1.5.12 The designated ETA(s) shall define the content requirements for software documents or

records. [SWE-153].

Note: The recommended practices and guidelines for the content of different types of software

activities (whether stand-alone or condensed into one or more project level or software

documents or electronic files) are defined in NASA-HDBK-2203. The Center defined content

should address prescribed content, format, maintenance instructions, and submittal

requirements for all software related records. The designated TA for software approves the

required software content for projects within their scope of authority. Electronic submission of

data deliverables is preferred. “Software records should be in accordance with NPR 7120.5,

NPD 2810.1, NASA Information Security Policy, NPD 2800.1, and NPR 2810.1.”

2.1.5.13 The Center Director, or designee, shall ensure that the Government has clear rights in the
software, a Government purpose license, or other appropriate license or permission from third
party owners prior to providing the software for internal NASA software sharing or reuse. [SWE-
215]

2.1.5.14 The Center Director, or designee, shall ensure that all software listed on the internal
software sharing or reuse catalog(s) conforms to NASA software engineering policy and
requirements. [SWE-216]

 11

2.1.5.15 The Center Director, or designee, (e.g., the Civil Servant Technical Point of Contact
(POC) for the software product) shall perform the following actions: [SWE-217]

a. Keep a list of all contributors to the software product.

b. Ensure that the software product contains appropriate disclaimer and indemnification provisions
(e.g., in a “README” file) stating that the software may be subject to U.S. export control
restrictions, and it is provided “as is” without any warranty, express or implied, and that the
recipient waives any claims against, and indemnifies and holds harmless, NASA and its
contractors and subcontractors.

2.1.5.16 The Center Director or designee (e.g., the Civil Servant Technical POC for the software
product) shall perform the following actions for each type of internal NASA software transfer or
reuse: [SWE-214]

a. A NASA civil servant to a NASA civil servant:

(1) Verify the requesting NASA civil servant has requested and completed an Acknowledgment
(as set forth in the note following paragraph 3.10.2e).

(2) Provide the software to the requesting NASA civil servant.

b. A NASA civil servant to a NASA contractor:

(1) Verify a NASA civil servant (e.g., a Contracting Officer (CO) or Contracting Officer
Representative (COR)) has confirmed the NASA contractor requires such software for the
performance of Government work under their NASA contract and that such performance of work
will be a Government purpose. Center Intellectual Property Counsel should be consulted for any
questions regarding what is or is not a Government purpose.

(2) Verify a NASA civil servant (e.g., a CO or COR) has confirmed an appropriate Government
Furnished Software clause (e.g., 1852.227-88, “Government-furnished computer software and
related technical data”) is in the subject contract (or, if not, that such clause is first added); or the
contractor may also obtain access to the software in accordance with the external release
requirements of NPR 2210.1, Release of NASA Software.

(3) Verify NASA contractor is not a foreign person (as defined by 22 CFR §120.16).

(4) Verify there is a requesting NASA Civil servant (e.g., a CO or COR), and the requesting
NASA civil servant has executed an Acknowledgment (as set forth in the note following
paragraph 3.10.2e).

(5) After items (1), (2), (3), and (4) are complete, provide the software to the requesting NASA
civil servant. The requesting NASA civil servant is responsible for furnishing the software to the
contractor pursuant to the subject contract’s terms.

c. A NASA civil servant to any NASA grantees, Cooperative Agreement Recipients or any other
agreement partners or to any other entity under U.S. Government Agency Release, Open source
Release, Public Release, U.S. Release, Foreign Release:

(1) If the release is to any NASA grantees, Cooperative Agreement Recipients, or any other
agreement (e.g., Space Act Agreement) partners or to any other entity under U.S. Government

 12

Agency Release, an Open source Release, a Public Release, a U.S. Release, or a Foreign Release,
the software release is completed in accordance with the external release requirements of NPR
2210.1, Release of NASA Software – Revalidated w/change 1.

2.1.6 Center SMA Director

2.1.6.1 In this document, the phrase “the Center SMA Director will…” means that the roles and

responsibilities of the Center SMA Directors may be further delegated within the organization

consistent with the scope and scale of the system. The Center SMA Director designates SMA TAs

for programs, facilities, and projects, providing direction, functional oversight, and assessment for

all Agency safety, reliability, maintainability, and quality engineering and assurance activities,

including Software Assurance.

2.1.6.2 The Center SMA Director will assure the project completes thorough hazard analyses

which include software.

Note: The project manager is responsible for assuring Software Safety Hazard Analyses is

performed on their project. The PM is responsible for the development of the project’s software

hazard analyses and its independent review. Any differences in software safety’s independent

software safety critical determinations will be worked through the ETA and the SMA TA.

2.1.6.3 The Center SMA Director, will review the project’s IV&V ’Project Execution Plan (IPEP)

to ensure it meets NASA IV&V criteria as defined in NASA-STD-8739.8.

2.1.6.4 The Center SMA Director will support the project to ensure that acquired, developed, and

maintained software, as required by SWE-032, is developed by an organization with a non-expired

CMMI®-DEV rating as measured by a CMMI® Institute Certified Lead Appraiser.

2.1.6.5 The Center SMA Director will support the Center organizations in obtaining and

maintaining the NASA organization’s CMMI®-DEV ratings.

2.1.6.6 The Center SMA Director, or designee, will ensure that the project’s Requirements

Mapping Matrix implementation approach does not impact SMA on the project.

2.1.6.7 The Center SMA Director will ensure that any disagreements between software

engineering or the project office and software assurance are identified, reported, tracked, and if not

resolved, elevated.

2.1.6.8 The designated SMA TA(s) will review, ensure, and concur on software products and

processes throughout the project acquisition, development, delivery, operations, and maintenance.

2.1.7 Contracting Officers

2.1.7.1 Contracting Officers, as defined in FAR 2.101, or Agreement Managers as defined in NAII

1050.3, NASA Partnership Guide, in conjunction with Program/Project Managers shall ensure that

the appropriate FAR, NFS, and other provisions/clauses based on this requirements document and

NASA-STD-8739.8 are included for all NASA contracts, Space Act Agreements, cooperative

 13

agreements, partnership agreements, grants, or other agreements pursuant to which software is

being acquired, developed, modified, operated, or managed for NASA. [SWE-218]

2.1.8 Technical Authorities

2.1.8.1 The TA(s) or Institutional Authority(s) for requirements in this NPR will be defined per

NPR 7120.5, Section 3.3.

Note: Refer to Appendix C (column titled “Authority”) for requirements and their associated

Technical or Institutional Authority. NASA HQ will designate the TA for SWE-032 and SWE-

141.

2.1.8.2 The technical and institutional authorities for requirements in this directive shall: [SWE-

126]

a. Assess projects’ requirements mapping matrices and tailoring from requirements in this

directive by:

(1) Checking the accuracy of the project’s classification of software components against the

definitions in Appendix D.

(2) Evaluating the project’s Requirements Mapping Matrix for commitments to meet applicable

requirements in this directive, consistent with software classification.

(3) Confirming that requirements marked “Not-Applicable” in the project’s Requirements

Mapping Matrix are not relevant or not capable of being applied.

(4) Determining whether the project’s risks, mitigations, and related requests for relief from

requirements designated with “X” in Appendix C are reasonable and acceptable.

(5) Approving/disapproving requests for relief from requirements designated with “X” in

Appendix C, which falls under this Authority’s scope of responsibility.

(6) Facilitating the processing of projects’ requirements mapping matrices and tailoring decisions

from requirements in this directive, which falls under the responsibilities of a different Authority

(see column titled “Authority” in Appendix C).

(7) Include the SAISO (or delegate) in all software reviews to ensure software cybersecurity is

included throughout software development, testing, maintenance, retirement, operations,

management, acquisition, and assurance activities.

(8) Ensuring that approved requirements mapping matrices, including any tailoring rationale

against this directive, are archived as part of retrievable project records.

Note: To effectively assess projects’ requirements mapping matrices, the designated Center

Engineering Technical and Institutional Authorities for this NPR are recognized NASA

software engineering experts or utilize recognized NASA software engineering experts in their

 14

decision processes. NASA-HDBK-2203 contains valuable information on each requirement,

links to relevant NASA Lessons Learned, and guidance on tailoring. Center organizations or

branches may also share frequently used tailoring and related common processes.

b. Indicate the Technical Authority or Technical Authorities approval by signature(s) in the

Requirements Mapping Matrix itself, when the Requirements Mapping Matrix is used to tailor

from the applicable “X” requirement(s).

Note: The Requirements Mapping Matrix documents the requirements that the project plans to

meet, “not applicable” requirements, and any tailoring approved by designated Authorities

with associated justification. If a project wants to tailor a requirement marked as HQ TA, then

the project is required to get NASA HQ approval (e.g., OCE, OSMA, OCIO, or OCHMO) on a

tailored request or a software Requirements Mapping Matrix.

2.2 Principles Related to Tailoring Requirements

2.2.1 Software requirements tailoring is the process used to seek relief from NPR requirements

consistent with program or project objectives, acceptable risk, and constraints. To accommodate

the wide variety of software systems and subsystems, application of these requirements to specific

software development efforts may be tailored where justified and approved. To effectively

maintain control over the application of requirements in this directive and to ensure proposed

tailoring from specific requirements are appropriately mitigated, NASA established TA

governance. Tailoring from requirements in this directive are governed by the following

requirements, as well as those defined in NPD 1000.3, The NASA OrganizationNPD 2800.1, NPR

2810.1, NPR 7120.5, NPR 7120.7, NPR 7120.8, NPR 7120.11 and NPR 8715.3 for all of the

Agency’s investment areas. The Technical and Institutional Authority for each requirement in this

NPR is documented in the “Authority” column of Appendix C. The responsible program, project,

or operations manager need to formally accept the tailoring risk. Tailoring decided at the Center

level are to consult the Center ETA, Center SMA TA, Center Health and Medical TA, and the

NASA CIO’s Center IT Authority designee as defined in the requirements mapping matrix. The

OSMA has co-approval on any tailoring decided at the HQ level that involves software. The

Office of the Chief Medical Officer (OCHMO) has co-approval on any tailoring decided that

involves software with health and medical implications. The SAISO, or designee, has co-approval

on any tailoring of the cybersecurity requirements in Section 3.11. For tailoring involving human

safety risk, the actual risk taker(s) (or official spokesperson[s] and appropriate supervisory chain)

need to formally agree to assume the risk. ’

2.2.2 This directive establishes a baseline set of requirements to reduce software engineering risks

on NASA projects and programs. Appendix C defines the default applicability of the requirements

based on software classification. Each project has unique circumstances, and tailoring can be

employed to modify the requirements set appropriate for the software engineering effort. Tailoring

of requirements is based on key characteristics of the software engineering effort, including

acceptable technical and programmatic risk posture, Agency priorities, size, and complexity.

Requirements can be tailored more broadly across a group of similar projects, a program, an

organization, or other collection of similar software development efforts in accordance with NPR

7120.5, Section 3.5.5.

http://swehb.nasa.gov/

 15

2.2.3 In this directive, the phrase “the project manager shall...” means the roles and responsibilities
of the project manager may be further delegated within the organization to the scope and scale of
the system.

2.2.4 Requirements in this directive are invoked by software classifications as defined in

Appendix C:

a. “X” – Indicates an invoked requirement by this directive consistent with software classification

(ref. SWE-139).

b. Blank – Optional/Not invoked by this directive.

2.2.5 The approval of the Authority designated in Appendix C is required for all tailoring of

requirements designated as “X.” The implementation approach used to meet each requirement is

typically determined by the appropriate software engineering management in conjunction with the

project.

Note: The request for relief from a requirement includes the rationale, a risk evaluation, and

reference to all material that justifies supporting acceptance. The organization submitting the

tailoring request informs the next higher level of involved management in a timely manner of

the tailoring request. The dispositioning organization reviews the request with the other

organizations that could be impacted or have a potential risk (i.e., to safety, quality,

cybersecurity, health) with the proposed changes; and obtains the concurrence of those

organizations.

2.2.6 Requests for software requirements relief at either the Center or HQ TA level (i.e., partial or

complete relief) may be submitted in the streamlined form of a Requirements Mapping Matrix.

The required signatures from engineering, NASA CIO, and SMA authorities are to be obtained. A

required signature from designated SAISO is required for relief of cybersecurity requirements. If

the Requirements Mapping Matrix is completed and approved in accordance with NPR 7120.5’s

direction on Authority and this directive, it meets the requirements for requesting tailoring.

2.2.7 The engineering, CIO, and SMA authorities shall review and agree with any tailored NPR

7150.2 requirements per the requirements mapping matrix authority column. [SWE-150]

2.2.8 If a system or subsystem development evolves to meet a higher or lower software

classification as defined in Appendix D, then the project manager shall update their plan(s) and

initiate modifications to any supplier contracts to fulfill the applicable requirements per the

Requirements Mapping Matrix in Appendix C with approved tailoring. [SWE-021]

 16

Chapter 3: Software Management Requirements

3.1 Software Life Cycle Planning

3.1.1 Software life cycle planning covers the software aspects of a project from inception through

retirement. The software life cycle planning is an organizing process that considers the software as

a whole and provides the planning activities required to ensure a coordinated, well-engineered

process for defining and implementing project activities. These processes, plans, and activities are

coordinated within the project. At project conception, software needs for the project are analyzed,

including acquisition, supply, development, operation, maintenance, retirement, decommissioning,

and supporting activities and processes. The software effort is scoped, the development processes

defined, measurements defined, and activities are documented in software planning documents.

3.1.2 The project manager shall assess options for software acquisition versus development.

[SWE-033]

Note: The assessment can include risk, cost, and benefits criteria for each of the options listed

below:

a. Acquire an off-the-shelf software product that satisfies the requirement.

b. Develop a software product or obtain the software service internally.

c. Develop the software product or obtain the software service through contract.

d. Enhance an existing software product or service.

e. Reuse an existing software product or service.

f. Source code available external to NASA.

See the NASA Software Engineering Handbook for additional detail.

3.1.3 The project manager shall develop, maintain, and execute software plans, including security

plans, that cover the entire software life cycle and, as a minimum, address the requirements of this

directive with approved tailoring. [SWE-013]

Note: The recommended practices and guidelines for the content of different types of software

planning activities (whether stand-alone or condensed into one or more project level or

software documents or electronic files) are defined in NASA-HDBK-2203. The project should

include, or reference in the software development plans, procedures for coordinating the

software development and design, and the system or project development life cycle.

3.1.4 The project manager shall track the actual results and performance of software activities

against the software plans. [SWE-024]

a. Corrective actions are taken, recorded, and managed to closure.

b. Changes to commitments (e.g., software plans) that have been agreed to by the affected groups

and individuals are taken, recorded, and managed.

3.1.5 The project manager shall define and document the acceptance criteria for the software.

[SWE-034]

http://swehb.nasa.gov/

 17

3.1.6 The project manager shall establish and maintain the software processes, software

documentation plans, list of developed electronic products, deliverables, and list of tasks for the

software development that are required for the project’s software developers, as well as the action

required (e.g., approval, review) of the Government upon receipt of each of the deliverables.

[SWE-036]

Note: A list of typical software engineering products or electronic data products used on a

software project is contained in Chapter 6 of this directive. The software activities should

include plans for software product verification and validation activities, software assurance,

methods, environments, and criteria for the project.

3.1.7 The project manager shall define and document the milestones at which the software

developer(s) progress will be reviewed and audited. [SWE-037]

3.1.8 The project manager shall require the software developer(s) to periodically report status and

provide insight into software development and test activities; at a minimum, the software

developer(s) will be required to allow the project manager and software assurance personnel to:

[SWE-039]

a. Monitor product integration.

b. Review the verification activities to ensure adequacy.

c. Review trade studies and source data.

d. Audit the software development processes and practices.

e. Participate in software reviews and technical interchange meetings.

3.1.9 The project manager shall require the software developer(s) to provide NASA with software

products, traceability, software change tracking information, and nonconformances in electronic

format, including software development and management metrics. [SWE-040]

3.1.10 The project manager shall require the software developer(s) to provide NASA with

electronic access to the source code developed for the project in a modifiable format. [SWE-042]

Note: The electronic access requirements for the source code, software products, and software

process tracking information implies that NASA gets electronic copies of the items for use by

NASA at NASA facilities. This requirement should include MOTS software, ground test

software, simulations, ground analysis software, ground control software, science data

processing software, hardware manufacturing software, and Class E and Class F software.

3.1.11 The project manager shall comply with the requirements in this NPR that are marked with

an “X” in Appendix C consistent with their software classification. [SWE-139]

 18

3.1.12 Where approved, the project manager shall document and reflect the tailored requirement in

the plans or procedures controlling the development, acquisition, and deployment of the affected

software. [SWE-121]

3.1.13 Each project manager with software components shall maintain a requirements mapping

matrix or multiple requirements mapping matrices against requirements in this NPR, including

those delegated to other parties or accomplished by contract vehicles or Space Act Agreements.

[SWE-125]

Note: A project may have multiple software engineering requirements mapping matrices if

needed for multiple software components on a given project.

Note: Project relief from an applicable “X” requirement can be granted only by the

designated TAs, Engineering, and SMA, or, for security issues, the NASA CIO. The record of

their approval of the tailored requirements in a Requirements Mapping Matrix will be

indicated by the Authority signature or signatures in the Requirements Mapping Matrix. The

projects will document their related mitigations and risk acceptance in the approved

Requirements Mapping Matrix. When the requirement and software class are marked with an

“X,” the projects record the risk and rationale for any requirements that are entirely or

partially relieved in the Requirements Mapping Matrix. The CIO has institutional authority on

all Class F software projects.

3.1.14 The project manager shall satisfy the following conditions when a COTS, GOTS, MOTS,

OSS, or reused software component is acquired or used: [SWE-027]

a. The requirements to be met by the software component are identified.

b. The software component includes documentation to fulfill its intended purpose (e.g., usage

instructions).

c. Proprietary rights, usage rights, ownership, warranty, licensing rights, transfer rights, and

conditions of use (e.g., required copyright, author, and applicable license notices within the

software code, or a requirement to redistribute the licensed software only under the same license

(e.g., GNU GPL, ver. 3, license)) have been addressed and coordinated with Center Intellectual

Property Counsel.

d. Future support for the software product is planned and adequate for project needs.

e. The software component is verified and validated to the same level required to accept a similar

developed software component for its intended use.

f. The project has a plan to perform periodic assessments of vendor reported defects to ensure the

defects do not impact the selected software components.

Note: The project responsible for procuring off-the-shelf software is responsible for

documenting, prior to procurement, a plan for verifying and validating the software to the

same level that would be required for a developed software component. The project ensures

that the COTS, GOTS, MOTS, reused, and auto-generated code software components and data

 19

meet the applicable requirements in this directive assigned to its software classification as

shown in Appendix C.

3.2 Software Cost Estimation

3.2.1 To better estimate the cost of development, the project manager shall establish, document,

and maintain: [SWE-015]

a. Two cost estimate models and associated cost parameters for all Class A and B software

projects that have an estimated project cost of $2 million or more.

b. One software cost estimate model and associated cost parameter(s) for all Class A and Class B

software projects that have an estimated project cost of less than $2 million.

c. One software cost estimate model and associated cost parameter(s) for all Class C and Class D

software projects.

d. One software cost estimate model and associated cost parameter(s) for all Class F software

projects.

3.2.2 The project manager’s software cost estimate(s) shall satisfy the following conditions:

[SWE-151]

a. Covers the entire software life cycle.

b. Is based on selected project attributes (e.g., programmatic assumptions/constraints, assessment

of the size, functionality, complexity, criticality, reuse code, modified code, and risk of the

software processes and products).

c. Is based on the cost implications of the technology to be used and the required maturation of

that technology.

d. Incorporates risk and uncertainty, including end state risk and threat assessments for

cybersecurity.

e. Includes the cost of the required software assurance support.

f. Includes other direct costs.

Note: In the event of a decision to outsource, it is a best practice that both the acquirer

(NASA) and the provider (contractor/subcontractor) be responsible for developing software

cost estimates. For any class of software that has significant risk exposure, consider

performing at least two cost estimates.

3.2.3 The project manager shall submit software planning parameters, including size and effort

estimates, milestones, and characteristics, to the Center measurement repository at the conclusion

of major milestones. [SWE-174]

 20

3.3 Software Schedules

3.3.1 The project manager shall document and maintain a software schedule that satisfies the

following conditions: [SWE-016]

a. Coordinates with the overall project schedule.

b. Documents the interactions of milestones and deliverables between software, hardware,

operations, and the rest of the system.

c. Reflects the critical dependencies for software development activities.

d. Identifies and accounts for dependencies with other projects and cross-program dependencies.

3.3.2 The project manager shall regularly hold reviews of software schedule activities, status,

performance metrics, and assessment/analysis results with the project stakeholders and track issues

to resolution. [SWE-018]

3.3.3 The project manager shall require the software developer(s) to provide a software schedule

for the project’s review, and schedule updates as requested. [SWE-046]

3.4 Software Training

3.4.1 The project manager shall plan, track, and ensure project specific software training for

project personnel. [SWE-017]

Note: This includes any software assurance personnel assigned to the project.

3.5 Software Classification Assessments

3.5.1 The project manager shall classify each system and subsystem containing software in

accordance with the highest applicable software classification definitions for Classes A, B, C, D,

E, and F software in Appendix D. [SWE-020]

Note: The expected applicability of requirements in this directive to specific systems and

subsystems containing software is determined through the use of the NASA-wide definitions for

software classes in Appendix D in conjunction with the Requirements Mapping Matrix in

Appendix C. These definitions are based on (1) usage of the software with or within a NASA

system, (2) criticality of the system to NASA’s major programs and projects, (3) extent to

which humans depend upon the system, (4) developmental and operational complexity, and (5)

extent of the Agency’s investment.

Software assurance may perform an independent software classification, or concur with

engineering’s software classification decision. Software engineering and software assurance

technical authorities need to agree on the classification of each system and subsystem

containing software. If there is a disagreement between the technical authorities, then the

dissenting opinion process for your center should be followed.

 21

3.5.2 The project manager shall maintain records of each software classification determination,

each software Requirements Mapping Matrix, and the results of each software independent

classification assessments for the life of the project. [SWE-176]

3.6 Software Assurance and Software Independent Verification & Validation

3.6.1 The project manager shall plan and implement software assurance, software safety, and

IV&V (if required) per NASA-STD-8739.8, Software Assurance and Software Safety Standard.

[SWE-022]

Note: Software assurance activities occur throughout the life of the project. Some of the actual

analyses and activities may be performed by engineering or the project. Software Assurance

directions, requirements, and guidance can be found in the NASA-STD-8739.8.

3.6.2 For projects reaching Key Decision Point A, the program manager shall ensure that software

IV&V is performed on the following categories of projects: [SWE-141]

a. Category 1 projects as defined in NPR 7120.5.

b. Category 2 projects as defined in NPR 7120.5, that have Class A or Class B payload risk

classification per NPR 8705.4, Risk Classification for NASA Payloads.

c. Projects selected explicitly by the Mission Directorate Associate Administrator (MDAA) to

have software IV&V.

3.6.3 If software IV&V is required for a project, the project manager, in consultation with NASA

IV&V, shall ensure an IPEP is developed, approved, maintained, and executed in accordance with

IV&V requirements in NASA-STD-8739.8. [SWE-131]

Note: The IV&V Advisory Board will review the scope of NASA IV&V activities on an annual

basis as part of the budget planning process.

3.6.4 If software IV&V is performed on a project, the project manager shall ensure that IV&V is

provided access to development artifacts, products, source code, and data required to perform the

IV&V analysis efficiently and effectively. [SWE-178]

Note: The artifacts and products should be provided electronically in original format (i.e.,

non-pdf) and, where possible, direct read-only electronic access to project document

repositories and data stores should be provided. Appropriate security products should be

completed and transferred as part of the overall package.

3.6.5 If software IV&V is performed on a project, the project manager shall provide responses to

IV&V submitted issues and risks and track these issues and risks to closure. [SWE-179]

3.7 Safety-Critical Software

 22

3.7.1 The project manager, in conjunction with the SMA organization, shall determine if each

software component is considered to be safety-critical per the criteria defined in NASA-STD-

8739.8. [SWE-205]

3.7.2 If a project has safety-critical software, the project manager shall implement the safety-

critical software requirements contained in NASA-STD-8739.8. [SWE-023]

3.7.3 If a project has safety-critical software or mission-critical software, the project manager shall

implement the following items in the software: [SWE-134]

a. The software is initialized, at first start and restarts, to a known safe state.

b. The software safely transitions between all predefined known states.

c. Termination performed by software functions is performed to a known safe state.

d. Operator overrides of software functions require at least two independent actions by an

operator.

e. Software rejects commands received out of sequence when execution of those commands out of

sequence can cause a hazard.

f. The software detects inadvertent memory modification and recovers to a known safe state.

g. The software performs integrity checks on inputs and outputs to/from the software system.

h. The software performs prerequisite checks prior to the execution of safety-critical software

commands.

i. No single software event or action is allowed to initiate an identified hazard.

j. The software responds to an off-nominal condition within the time needed to prevent a

hazardous event.

k. The software provides error handling.

l. The software can place the system into a safe state.

Note: These requirements apply to components that reside in a mission-critical or safety-

critical system, and the components control, mitigate, or contribute to a hazard as well as

software used to command hazardous operations/activities.

3.7.4 If a project has safety-critical software, the project manager shall ensure that there is 100

percent code test coverage using the Modified Condition/Decision Coverage (MC/DC) criterion

for all identified safety-critical software components. [SWE-219]

Note: In MC/DC coverage, every condition in a decision is tested independently to reach full

coverage. Each condition will be executed twice, once with the results true and once with the

results of false, but with no difference in the truth values of all other conditions in the decision.

In addition, it will be shown that each condition independently affects the decision. Any

 23

deviations from 100 percent should be reviewed and waived with rationale by the TAs

approval. It is recommended that someone independent of the developer of the code under test

design and perform this testing to ensure requirement interpretation or incorrect assumptions

do not escape this testing.

3.7.5 If a project has safety-critical software, the project manager shall ensure all identified safety-

critical software components have a cyclomatic complexity value of 15 or lower. Any exceedance

shall be reviewed and waived with rationale by the project manager or technical approval

authority. [SWE-220]

Note: Cyclomatic complexity is a metric used to measure the complexity of a software

program. This metric measures independent paths through the source code. The point of the

requirement is to minimize risk, minimize testing, and increase reliability associated with

safety-critical software code components, thus reducing the chance of software failure during

a hazardous event. The software developer should assess all software safety-critical

components with a cyclomatic complexity score over 15 for testability, maintainability, and

code quality. For more guidance on this requirement, see NASA-HDBK-2203.

3.8 Automatic Generation of Software Source Code

3.8.1 The project manager shall define the approach to the automatic generation of software source

code including: [SWE-146]

a. Validation and verification of auto-generation tools.

b. Configuration management of the auto-generation tools and associated data.

c. Description of the limits and the allowable scope for the use of the auto-generated software.

d. Verification and validation of auto-generated source code using the same software standards

and processes as hand-generated code.

e. Monitoring the actual use of auto-generated source code compared to the planned use.

f. Policies and procedures for making manual changes to auto-generated source code.

g. Configuration management of the input to the auto-generation tool, the output of the auto-

generation tool, and modifications made to the output of the auto-generation tools.

3.8.2 The project manager shall require the software developers and custom software suppliers to

provide NASA with electronic access to the models, simulations, and associated data used as

inputs for auto-generation of software. [SWE-206]

Note: The term electronic access includes access to the data from NASA facilities.

3.9 Software Development Processes and Practices

 24

3.9.1 The CMMI® model is an industry-accepted model of software development practices. It is

utilized to assess how well NASA projects are supported by software development organization(s)

having the necessary skills, practices, and processes in place to produce reliable products within

cost and schedule estimates. The CMMI® model provides NASA with a methodology to:

a. Measure software development organizations against an industry-wide set of best practices that

address software development and maintenance activities applied to products and services.

b. Measure and compare the maturity of an organization’s product development and acquisition

processes with the industry state of the practice.

c. Measure and ensure compliance with the intent of the directive’s process related requirements

using an industry standard approach.

d. Assess internal and external software development organization’s processes and practices.

e. Identify potential risk areas within a given organization’s software development processes and

practices.

3.9.2 The project manager shall acquire, develop, and maintain software from an organization with

a non-expired CMMI®-DEV rating as measured by a CMMI® Institute Certified Lead Appraiser

as follows: [SWE-032]

a. For Class A software: CMMI®-DEV Maturity Level 3 Rating or higher for software.

b. For Class B software (except Class B software on NASA Class D payloads, as defined in NPR

8705.4): CMMI®-DEV Maturity Level 2 Rating or higher for software.

Note: Organizations need to complete an official CMMI® Institute defined appraisal against

either the CMMI®-DEV model V1.3 or V2.0. Organizations are to maintain their rating and

have their results posted on the CMMI® Institute Website, or provide an Appraisal Disclosure

Statement so that NASA can assess the current maturity/capability rating. Software

development organizations need to maintain their appraisal rating during the period they are

responsible for the development and maintenance of the software. CMMI® ratings can cover a

team, a group, a project, a division, or an entire organization.

For Class B software, an exception can be exercised for those cases in which NASA wishes to

purchase a product from the "best in class provider," but the best in class provider does not

have the required CMMI® rating. For Class B software, instead of a CMMI® rating by a

development organization, the project will conduct an evaluation, performed by a qualified

evaluator selected by the Center ETA, against the CMMI®-DEV Maturity Level 2 practices,

and mitigate any risk, if deficiencies are identified in the evaluation. If this approach is used,

the development organization and project are responsible for correcting the deficiencies

identified in the evaluation. When this exception is exercised, the OCE and Center ETA are

notified of the proposition and provided the results of the evaluation. The project manager

should seek guidance from the Office of Procurement (OP) for help in exercising the

exception.

3.10 Software Reuse

 25

3.10.1 The project manager shall specify reusability requirements that apply to its software

development activities to enable future reuse of the software, including the models, simulations,

and associated data used as inputs for auto-generation of software, for U.S. Government purposes.

[SWE-147]

3.10.2 The project manager shall evaluate software for potential reuse by other projects across

NASA and contribute reuse candidates to the appropriate NASA internal sharing and reuse

software system. However, if the project manager is not a civil servant, then a civil servant will

pre-approve all such software contributions; all software contributions should include, at a

minimum, the following information: [SWE-148]

a. Software Title.

b. Software Description.

c. The Civil Servant Software Technical POC for the software product.

d. The language or languages used to develop the software.

e. Any third-party code contained therein, and the record of the requisite license or permission

received from the third party permitting the Government’s use and any required markings (e.g.,

required copyright, author, applicable license notices within the software code, and the source of

each third-party software component (e.g., software URL & license URL)), if applicable.

Note: Currently, there are more than one Agency-wide software inventories and repositories,

several options can be found in NASA-HDBK-2203. In order to obtain and reuse the internal

software reuse candidates from these repositories, NASA civil servants may request a copy by

requesting and completing a simple Acknowledgment of Receipt of the software form that

identifies any restrictions on NASA’s right to use the software, including limiting its use to

governmental purposes only. The Civil Servant Software Technical POC for the software

product will keep a list of all contributors to the software. Any software shared will contain

appropriate disclaimer and indemnification provisions (e.g., in a “README” file) stating that

the software may be subject to U.S. export control restrictions, and it is provided “as is”

without any warranty, express, or implied and that the recipient waives any claims against,

and indemnifies and holds harmless, NASA and its contractors and subcontractors (see

paragraph 2.1.5.17).

f. Release notes.

3.10.3 In accordance with NPD 2091.1, Inventions Made by Government Employees, NASA Civil

Servant employees who make an invention embodied by software will submit to NASA a

disclosure of such invention. Likewise, such inventions made by NASA contractors will be

reported to NASA, preferably through the NASA electronic New Technology Report (e-NTR)

system, pursuant to the terms of their respective contract. Such disclosures are made through the

NASA e-NTR system available at http://invention.nasa.gov/.

3.11 Software Cybersecurity

http://invention.nasa.gov/

 26

3.11.1 Software defects are a central and critical aspect of computer security vulnerabilities.

Software defects with cybersecurity ramifications include implementation bugs such as buffer

overflows and design flaws such as inconsistent error handling.

Note: Software security relies on high-quality code development and testing practices (clean

code, modular structure, well-defined interfaces) – anything that reduces error rates and

opportunities for misinterpretation or error; considers both the development and

deployment/operational context for the software; has the ability to rapidly assess, triage,

correct, and deploy security-related updates while the software is in deployment/operations.

3.11.2 The project manager shall perform a software cybersecurity assessment on the software

components per the Agency security policies and the project requirements, including risks posed

by the use of COTS, GOTS, MOTS, OSS, or reused software components. [SWE-156]

3.11.3 The project manager shall identify cybersecurity risks, along with their mitigations, in flight

and ground software systems and plan the mitigations for these systems. [SWE-154]

Note: Project Protection Plans describe the program’s approach for planning and

implementing the requirements for information, physical, personnel, industrial, and

counterintelligence/counterterrorism security, and for security awareness/education

requirements in accordance with NPR 1600.1, NASA Security Program Procedural

Requirements, NPD 1600.2, the NASA Security Policy, NPD 2810.1, and NPR 2810.1. Include

provisions in the plan to protect personnel, facilities, mission-essential infrastructure, and

critical program information from potential threats and vulnerabilities that may be identified

during the threat and vulnerability assessment process.

3.11.4 The project manager shall implement protections for software systems with

communications capabilities against unauthorized access per the requirements contained in the

NASA-STD-1006, Space System Protection Standard. [SWE-157]

3.11.5 The project manager shall test the software and record test results for the required software

cybersecurity mitigation implementations identified from the security vulnerabilities and security

weaknesses analysis. [SWE-159]

Note: Include assessments for security vulnerabilities during Peer Review/Inspections of

software requirements and design. Utilize automated security static analysis as well as coding

standard static analyses of software code to find potential security vulnerabilities.

3.11.6 The project manager shall identify, record, and implement secure coding practices. [SWE-

207]

3.11.7 The project manager shall verify that the software code meets the project’s secure coding

standard by using the results from static analysis tool(s). [SWE-185]

Note: If a static analysis tool will not work with the selected coding standard, other methods

are acceptable, including manual inspection.

 27

3.11.8 The project manager shall identify software requirements for the collection, reporting, and

storage of data relating to the detection of adversarial actions. [SWE-210]

Note: Monitoring of key software observables (e.g., number of failed login attempts,

performance changes, internal communication changes) is needed to detect adversarial

actions that threaten mission success. When an adversarial action occurs, it should be

reported. Raw event data should be further analyzed to determine whether an anomalous event

represents an attack, and if so, the nature of the attack.

3.12 Software Bi-Directional Traceability

3.12.1 The project manager shall perform, record, and maintain bi-directional traceability between

the following software elements: [SWE-052]

Table 1. Bi-directional traceability by software classification

Bi-directional Traceability Class A, B,

and C

Class

D

Class

F

Higher-level requirements to the software requirements X X

Software requirements to the system hazards X X

Software requirements to the software design components X

Software design components to the software code X

Software requirements to the software verification(s) X X X

Software requirements to the software non-conformances X X X

Note: The project manager will maintain bi-directional traceability between the software

requirements and software-related system hazards, including hazardous controls, hazardous

mitigations, hazardous conditions, and hazardous events.

 28

Chapter 4: Software Engineering Life Cycle Requirements

4.1 Software Requirements

4.1.1 The requirements phase is one of the most critical phases of software engineering. Studies

show that the top problems in the software industry are due to poor requirements elicitation,

inadequate requirements specification, and inadequate management of changes to requirements.

Requirements provide the foundation for the entire life cycle, as well as for the software product.

Requirements also provide a basis for planning, estimating, and monitoring. Requirements are

based on customer, user, and other stakeholder needs and design and development constraints. The

development of requirements includes elicitation, analysis, documentation, verification, and

validation. Ongoing customer validation of the requirements to ensure the end products meet

customer needs is an integral part of the life cycle process. Customer validation can be

accomplished via rapid prototyping and customer-involved reviews of iterative and final software

requirements.

4.1.2 The project manager shall establish, capture, record, approve, and maintain software

requirements, including requirements for COTS, GOTS, MOTS, OSS, or reused software

components, as part of the technical specification. [SWE-050]

Note: The software technical requirements definition process is used to transform the

baselined stakeholder expectations into unique, quantitative, and measurable technical

software requirements that can be used for defining a design solution for the software end

products and related enabling products. This process also includes validation of the

requirements to ensure that the requirements are well-formed (clear and unambiguous),

complete (agrees with customer and stakeholder needs and expectations), consistent (conflict

free), and individually verifiable and traceable to a higher level requirement. Recommended

content for a software specification can be found in NASA-HDBK-2203.

4.1.3 The project manager shall perform software requirements analysis based on flowed-down

and derived requirements from the top-level systems engineering requirements, safety and

reliability analyses, and the hardware specifications and design. [SWE-051]

4.1.4 The project manager shall include software related safety constraints, controls, mitigations,

and assumptions between the hardware, operator, and software in the software requirements

documentation. [SWE-184]

4.1.5 The project manager shall track and manage changes to the software requirements. [SWE-

053]

4.1.6 The project manager shall identify, initiate corrective actions, and track until closure

inconsistencies among requirements, project plans, and software products. [SWE-054]

4.1.7 The project manager shall perform requirements validation to ensure that the software will

perform as intended in the customer environment. [SWE-055]

http://swehb.nasa.gov/

 29

4.2 Software Architecture

4.2.1 Experience confirms that the quality and longevity of a software-reliant system is primarily

determined by its architecture. The software architecture underpins a system’s software design and

code; it represents the earliest design decisions, ones that are difficult and costly to change later.

The transformation of the derived and allocated requirements into the software architecture results

in the basis for all software development work.

4.2.2 A software architecture:

a. Formalizes precise subsystem decompositions.

b. Defines and formalizes the dependencies among software work products within the integrated

system.

c. Serves as the basis for evaluating the impacts of proposed changes.

d. Maintains rules for use by subsequent software engineers that ensure a consistent software

system as the work products evolve.

e. Provides a stable structure for use by future groups through the documentation of the

architecture, its views and patterns, and its rules.

f. Follows guidelines created by the NASA Space Asset and the Enterprise Protection Program to

protect mission architectures.

g. Documents the valid and invalid modes or states of operation within the software requirements.

4.2.3 The project manager shall transform the requirements for the software into a recorded

software architecture. [SWE-057]

Note: A documented software architecture that describes: the software’s structure; identifies

the software qualities (i.e., performance, modifiability, and security); identifies the known

interfaces between the software components and the components external to the software (both

software and hardware); identifies the interfaces between the software components and

identifies the software components. Reference NASA’s Software Architecture Review Board

(SARB) paper NTRS ID 20160005787, “Quality Attributes for Mission Flight Software: A

Reference for Architects.”

4.2.4 The project manager shall perform a software architecture review on the following

categories of projects: [SWE-143]

a. Category 1 Projects as defined in NPR 7120.5.

b. Category 2 Projects as defined in NPR 7120.5, that have Class A or Class B payload risk

classification per NPR 8705.4.

 30

4.3 Software Design

4.3.1 Software design is the process of defining the software architecture, components, modules,

interfaces, and data for a software system to satisfy specified requirements. The software

architecture is the fundamental organization of a system embodied in its components, their

relationships to each other and the environment, and the principles guiding its design and

evolution. The software architectural design is concerned with creating a strong overall structure

for software entities that fulfill the allocated system and software-level requirements. Typical

views captured in an architectural design include the decomposition of the software subsystem

into design entities, computer software configuration items, definitions of external and internal

interfaces, dependency relationships among entities and system resources, and finite state

machines. The design should be further refined into lower-level entities that permit the

implementation by coding in a programming language. Typical attributes that are documented for

lower-level entities include the identifier, type, purpose, function, constraints, subordinates,

dependencies, interface, resources, processing, and data. Rigorous specification languages,

graphical representations, and related tools have been developed to support the evaluation of

critical properties at the design level. Projects are encouraged to take advantage of these improved

design techniques to prevent and eliminate errors as early in the life cycle as possible. Software,

developed or purchased, has additional requirements to comply with from Section 508 of the

Rehabilitation Act, as defined inNPR 2800.2.

4.3.2 The project manager shall develop, record, and maintain a software design based on the

software architectural design that describes the lower-level units so that they can be coded,

compiled, and tested. [SWE-058]

4.4 Software Implementation

4.4.1 Software implementation consists of implementing the requirements and design into code,

data, and records. Software implementation also consists of following coding methods and

standards. Unit testing is also usually a part of software implementation (unit testing can also be

conducted during the testing phase).

4.4.2 The project manager shall implement the software design into software code. [SWE-060]

4.4.3 The project manager shall select, define, and adhere to software coding methods, standards,

and criteria. [SWE-061]

4.4.4 The project manager shall use static analysis tools to analyze the code during the

development and testing phases to, at a minimum, detect defects, software security, code coverage,

and software complexity. [SWE-135]

Note: Although no maximum cyclomatic complexity score is required for non-safety critical

software, all software projects should regularly collect and maintain complexity metrics and

use them to manage risk, either when high-complexity code must be modified, or proactively to

improve the overall quality and maintenance of the code base. For safety critical software, the

analysis should take into account the requirements for cyclomatic complexity and code

coverage as defined in 3.7.5 and 3.7.4 respectively.

 31

4.4.5 The project manager shall unit test the software code. [SWE-062]

Note: For safety critical software, the unit testing should follow the requirement established in

3.7.4 of this document.

4.4.6 The project manager shall assure that the unit test results are repeatable. [SWE-186]

4.4.7 The project manager shall provide a software version description for each software release.

[SWE-063]

4.4.8 The project manager shall validate and accredit the software tool(s) required to develop or

maintain software. [SWE-136]

Note: All software development tools contain some number of software defects. Validation and

accreditation of the critical software development and maintenance tools ensure that the tools

being used during the software development life cycle do not generate or insert errors in the

software executable components. Software tool accreditation is the certification that a

software tool is acceptable for use for a specific purpose. Accreditation is conferred by the

organization best positioned to make the judgment that the software tool in question is

acceptable. The likelihood that work products will function properly is enhanced, and the risk

of error is reduced if the tools used in the development and maintenance processes have been

validated and accredited themselves.

4.5 Software Testing

4.5.1 The purpose of testing is to verify the software functionality and remove defects. Testing

verifies the code against the requirements and the design to ensure that the requirements are

implemented. Testing also identifies problems and defects that are corrected and tracked to closure

before product delivery. Testing also validates that the software operates appropriately in the

intended environment. Please note for Class A software there are additional software test

requirements and software integration requirements as defined in NPR 8705.2.

4.5.2 The project manager shall establish and maintain: [SWE-065]

a. Software test plan(s).

b. Software test procedure(s).

c. Software test(s), including any code specifically written to perform test procedures.

d. Software test report(s).

4.5.3 The project manager shall test the software against its requirements. [SWE-066]

Note: A best practice for Class A, B, and C software projects is to have formal software testing

planned, conducted, witnessed, and approved by an independent organization outside of the

development team.

 32

4.5.4 The project manager shall place software items under configuration management prior to

testing. [SWE-187]

Note: This includes the software components being tested and the software components being

used to test the software, including components such as support software, models, simulations,

ground support software, COTS, GOTS, MOTS, OSS, or reused software components.

4.5.5 The project manager shall evaluate test results and record the evaluation. [SWE-068]

4.5.6 The project manager shall use validated and accredited software models, simulations, and

analysis tools required to perform qualification of flight software or flight equipment. [SWE-070]

Note: Information regarding specific V&V techniques and the analysis of models and

simulations can be found in NASA-STD-7009, Standard for Models and Simulations, NASA-

HDBK-7009, Handbook for Models and Simulations, or discipline-specific recommended

practice guides.

4.5.7 The project manager shall update the software test and verification plan(s) and procedure(s)

to be consistent with software requirements. [SWE-071]

4.5.8 The project manager shall validate the software system on the targeted platform or high-

fidelity simulation. [SWE-073]

Note: Typically, a high-fidelity simulation has the exact processor, processor performance,

timing, memory size, and interfaces as the target system.

4.5.9 The project manager shall ensure that the code coverage measurements for the software are

selected, implemented, tracked, recorded, and reported. [SWE-189]

Note: This requirement can be met by running unit, integration, and validation tests;

measuring the code coverage; and achieving the code coverage by additional (requirement

based) tests, inspection, or analysis.

If the project does not get 100 percent structural coverage, it means one of four things and

each requires action on the project manager’s part:

• Requirement missing - the code that hasn’t been covered is performing an essential

activity, but no requirement indicates that this should be done;

• Test missing - the code that hasn’t been covered relates to an existing requirement, but

no test was implemented for it;

• Extraneous/dead code – the code that hasn’t been covered is not traceable to any

requirement and isn’t needed by the software;

• Deactivated code - the code that hasn’t been covered isn’t traceable to any

requirements for the current system, but is intended to be executed in specific

configurations.

The code coverage data and any rationale for uncovered code should be presented and

reviewed at major project milestones.

 33

4.5.10 The project manager shall verify code coverage is measured by analysis of the results of the

execution of tests. [SWE-190]

Note: If it can be justified that the required percentage cannot be achieved by test execution,

the analysis, inspection, or review of design can be applied to the non-covered code. The goal

of the complementary analysis is to assess that the non-covered code behavior is as expected.

4.5.11 The project manager shall plan and conduct software regression testing to demonstrate that

defects have not been introduced into previously integrated or tested software and have not

produced a security vulnerability. [SWE-191]

4.5.12 The project manager shall verify through test the software requirements that trace to a

hazardous event, cause, or mitigation technique. [SWE-192]

4.5.13 The project manager shall develop acceptance tests for loaded or uplinked data, rules, and

code that affects software and software system behavior. [SWE-193]

Note: These acceptance tests should validate and verify the data, rules, and code for nominal

and off-nominal scenarios.

4.5.14 The project manager shall test embedded COTS, GOTS, MOTS, OSS, or reused software

components to the same level required to accept a custom developed software component for its

intended use. [SWE-211]

4.6 Software Operations, Maintenance, and Retirement

4.6.1 Planning for operations, maintenance, and retirement are typically considered throughout the

software life cycle. Operational concepts and scenarios are derived from customer requirements

and validated in the operational or simulated environment. Software maintenance activities sustain

the software product after the product is delivered to the customer until retirement.

4.6.2 The project manager shall plan and implement software operations, maintenance, and

retirement activities. [SWE-075]

4.6.3 The project manager shall complete and deliver the software product to the customer with

appropriate records, including as-built records, to support the operations and maintenance phase of

the software’s life cycle. [SWE-077]

4.6.4 The project manager shall complete, prior to delivery, verification that all software

requirements identified for this delivery have been met or dispositioned, that all approved changes

have been implemented, and that all defects designated for resolution prior to delivery have been

resolved. [SWE-194]

4.6.5 The project manager shall maintain the software using standards and processes per the

applicable software classification throughout the maintenance phase. [SWE-195]

 34

4.6.6 The project manager shall identify the records and software tools to be archived, the location

of the archive, and procedures for access to the products for software retirement or disposal.

[SWE-196]

 35

Chapter 5: Supporting Software Life Cycle Requirements

5.1 Software Configuration Management (SCM)

5.1.1 Software Configuration Management (SCM) is the process of applying configuration

management throughout the software life cycle to ensure the completeness and correctness of

software configuration items. SCM applies technical and administrative direction and surveillance

to identify and record the functional and physical characteristics of software configuration items,

control changes to those characteristics, record and report change processing and implementation

status, and verify compliance with specified requirements. SCM establishes and maintains the

integrity of the products of a software project throughout the software life cycle. Use of standard

Center or organizational SCM processes and procedures is encouraged where applicable.

5.1.2 The project manager shall develop a software configuration management plan that describes

the functions, responsibilities, and authority for the implementation of software configuration

management for the project. [SWE-079]

5.1.3 The project manager shall track and evaluate changes to software products. [SWE-080]

5.1.4 The project manager shall identify the software configuration items (e.g., software records,

code, data, tools, models, scripts) and their versions to be controlled for the project. [SWE-081]

Note: The items to be controlled include tools, items, or settings used to develop the software,

which could impact the software. Examples of such items include compiler/assembler versions,

makefiles, batch files, and specific environment settings.

5.1.5 The project manager shall establish and implement procedures to: [SWE-082]

a. Designate the levels of control through which each identified software configuration item is

required to pass.

b. Identify the persons or groups with authority to authorize changes.

c. Identify the persons or groups to make changes at each level.

Note: IEEE 828-2012, IEEE Standard for Configuration Management in Systems and

Software Engineering describes configuration management processes to be established, how

they are to be accomplished, who is responsible for doing specific activities, when they are to

happen, and what specific resources are required. It addresses configuration management

activities over a product’s life cycle. Configuration management in systems and software

engineering is a specialty discipline within the larger discipline of configuration management.

Configuration management is essential to systems engineering and software engineering.

5.1.6 The project manager shall prepare and maintain records of the configuration status of

software configuration items. [SWE-083]

 36

5.1.7 The project manager shall perform software configuration audits to determine the correct

version of the software configuration items and verify that they conform to the records that define

them. [SWE-084]

5.1.8 The project manager shall establish and implement procedures for the storage, handling,

delivery, release, and maintenance of deliverable software products. [SWE-085]

5.1.9 The project manager shall participate in any joint NASA/developer audits. [SWE-045]

5.2 Software Risk Management

The project manager shall record, analyze, plan, track, control, and communicate all of the

software risks and mitigation plans. [SWE-086]

Note: Project managers should be aware of any risks that remain after mitigations have been

completed or after a risk has been accepted.

5.3 Software Peer Reviews and Inspections

5.3.1 Software peer reviews and inspections are the in-process technical examination of work

products by peers to find and eliminate defects early in the life cycle. Software peer reviews and

inspections are performed following defined procedures covering the preparation for the review,

the review itself is conducted, results are recorded, results are reported, and completion criteria is

certified. When planning the composition of a software peer review or inspection team, consider

including software testing, system testing, software assurance, software safety, software

cybersecurity, and software IV&V personnel.

5.3.2 The project manager shall perform and report the results of software peer reviews or

software inspections for: [SWE-087]

a. Software requirements.

b. Software plans, including cybersecurity.

c. Any design items that the project identified for software peer review or software inspections

according to the software development plans.

d. Software code as defined in the software and or project plans.

e. Software test procedures.

Note: Software peer reviews or software inspections are recommended best practices for all

safety and mission-success related software components. Recommended best practices and

guidelines for software formal inspections are contained in NASA-STD-8739.9, Software

Formal Inspection Standard.

5.3.3 The project manager shall, for each planned software peer review or software inspection:

[SWE-088]

 37

a. Use a checklist or formal reading technique (e.g., perspective-based reading) to evaluate the

work products.

b. Use established readiness and completion criteria.

c. Track actions identified in the reviews until they are resolved.

d. Identify the required participants.

5.3.4 The project manager shall, for each planned software peer review or software inspection,

record necessary measurements. [SWE-089]

5.4 Software Measurements

5.4.1 Software measurement is a primary tool for managing software processes and evaluating the

quality of software products. Analysis of measures provides insight into the capability of the

software organization and identifies opportunities for software process and product improvements.

Software measurement programs at multiple levels are established to meet measurement

objectives. The requirements below are designed to reinforce the use of measurement at the

project, Center software organization, and NASA Chief Engineer levels to assist in managing

projects, assuring quality, and improving software engineering practices. Measurement programs

are designed to meet the following goals:

a. Improve future software planning and software cost estimation.

b. Describe and record information about a software product during its life cycle.

c. Assist usability and maintainability of a software product.

d. Monitor and control software life cycle processes.

e. Communicate information about the system, software product, or service.

f. Provide a history, including lessons learned, during the development and maintenance to support

management and process improvement.

g. Provide evidence that the processes were followed.

h. Provide indicators of software quality.

i. Track the status of software engineering improvement and assurance programs.

j. Report the status of software engineering improvements and assurance programs to Center

software organizations and Center SMA.

5.4.2 The project manager shall establish, record, maintain, report, and utilize software

management and technical measurements. [SWE-090]

 38

Note: The NASA-HDBK-2203 contains a set of candidate management indicators that may be

used on a software development project. The NASA Chief Engineer may identify and document

additional Center measurement objectives, software measurements, collection procedures and

guidelines, and analysis procedures for selected software projects and software development

organizations. The software measurement process includes collecting software technical

measurement data from the project’s software developer(s).

5.4.3 The project manager shall analyze software measurement data collected using documented

project-specified and Center/organizational analysis procedures. [SWE-093]

5.4.4 The project manager shall provide access to the software measurement data, measurement

analyses, and software development status as requested to the sponsoring Mission Directorate, the

NASA Chief Engineer, the Center Technical Authorities, HQ SMA, and other organizations as

appropriate. [SWE-094]

5.4.5 The project manager shall monitor measures to ensure the software will meet or

exceed performance and functionality requirements, including satisfying constraints. [SWE-199]

Note: The metrics could include planned and actual use of computer hardware resources

(such as processor capacity, memory capacity, input/output device capacity, auxiliary storage

device capacity, and communications/network equipment capacity, bus traffic, partition

allocation) over time. As part of the verification of the software detailed design, the developer

will update the estimation of the technical resource metrics. As part of the verification of the

coding, testing, and validation, the technical resource metrics will be updated with the

measured values and will be compared to the margins.

5.4.6 The project manager shall collect, track, and report software requirements volatility metrics.

[SWE-200]

5.5 Software Non-conformance or Defect Management

5.5.1 The project manager shall track and maintain software non-conformances (including defects

in tools and appropriate ground software). [SWE-201]

5.5.2 The project manager shall define and implement clear software severity levels for all software

non-conformances (including tools, COTS, GOTS, MOTS, OSS, reused software components, and

applicable ground systems). [SWE-202]

Note: At a minimum, classes should include loss of life or loss of vehicle, mission success,

visible to the user with operational workarounds, and an ‘other’ class that does not meet

previous criteria.

5.5.3 The project manager shall implement mandatory assessments of reported non-conformances

for all COTS, GOTS, MOTS, OSS, and/or reused software components. [SWE-203]

 39

Note: This includes operating systems, run-time systems, device drivers, code generators,

compilers, math libraries, and build and Configuration Management (CM) tools. It should be

performed pre-flight, with mandatory code audits for critical defects.

5.5.4 The project manager shall implement process assessments for all high-severity software non-

conformances (closed loop process). [SWE-204]

 40

Chapter 6: Recommended Software Records Content

6.1 Software Engineering Products

It is possible to prepare a plan, associated procedures, and reports, as well as numerous records,

requests, descriptions, and specifications for each software development life cycle process. When

deciding how to prepare any of these items, consider the users of the information first. Reviewing

and understanding the requirements, needs, and background of users and stakeholders are essential

to applying the recommendations for the content of software records defined in NASA-HDBK-

2203. Specific content within these records may not apply to every project. Use of NASA Center

and contractor formats in document deliverables is acceptable if the required content (as defined

by the project) is addressed. Product records should be reviewed and updated as necessary.

Typical software engineering products or electronic data include:

a. Software Development Plan/Software Management Plan.

b. Software Schedule.

c. Software Cost Estimate.

d. Software Configuration Management Plan.

e. Software Change Reports.

f. Software Test Plans.

g. Software Test Procedures.

h. Software Test Reports.

i. Software Version Description Reports.

j. Software Maintenance Plan.

k. Software Assurance Plan(s).

l. Software Safety Plan.

m. Software Requirements Specification.

n. Software Data Dictionary.

o. Software and Interface Design Description (Architectural Design).

p. Software Design Description.

q. Software User’s Manual.

r. Records of Continuous Risk Management for Software.

http://swehb.nasa.gov/
http://swehb.nasa.gov/

 41

s. Software Measurement Analysis Results.

t. Record of Software Engineering Trade-off Criteria & Assessments (make/buy decision).

u. Software Acceptance Criteria and Conditions.

v. Software Status Reports.

w. Programmer’s/Developer’s Manual.

x. Software Reuse Report.

y. Software Model and Simulation Data and Documentation, including the Verification,

Validation, and Credibility Plan for Software Model and Simulation.

6.2 Software Engineering Product Content

The recommendations for the content of software records are defined in NASA-HDBK-2203. The

Software Engineering handbook also provides guidance regarding when these records should be

drafted, baselined, and updated. Examples and templates for these records and datasets are on the

Software Process Across NASA (SPAN) Web site, accessible at

https://nen.nasa.gov/web/software/wiki .

http://swehb.nasa.gov/
https://nen.nasa.gov/web/software/wiki

 42

Appendix A. Definitions

Accredit. The official acceptance of a software development tool, model, or simulation (including

associated data) to use for a specific purpose.

Analysis. The post-processing or interpretation of the individual values, arrays, files of data, or

execution information. It is a careful study of something to learn about its parts, what they do, and

how they are related to each other.

Assure. When personnel makes certain that the specified software engineering, software

management, and software assurance activities have been performed by others.

Bidirectional Traceability. Association among two or more logical entities that are discernible in

either direction (to and from an entity). (ISO/IEC/IEEE 24765, Systems and software engineering

– Vocabulary)

Code coverage. The percentage of the software that has been executed (covered) by the test suite.

Commercial Off-the-Shelf Software (COTS). The software product is available for purchase and

use without the need to conduct development activities. COTS solutions, as opposed to custom-

developed solutions, are typically readily available in the commercial marketplace and ready for

use as purchased.

Computer. A functional unit that can perform substantial computations, including numerous

arithmetic operations and logic operations.

Computer Software Configuration Item. An aggregation of software that is designated for

configuration management and treated as a single entity in the configuration management process.

Computer System. A system containing one or more computers and associated software. (Source:

ISO/IEC/IEEE 24765)

Condition. (1) Measurable qualitative or quantitative attribute that is stipulated for a requirement

and that indicates a circumstance or event under which a requirement applies (Systems and

software engineering--Systems and software assurance--Part 1: Concepts and vocabulary

ISO/IEC/IEEE 15026-1:2019, 3.1.5), (2) Description of a contingency to be considered in the

representation of a problem or a reference to other procedures to be considered as part of the

condition (Information processing -- Specification of single-hit decision tables, ISO 5806:1984,

3.6), and (3) Boolean expression containing no Boolean operators (Software and systems

engineering -- Software testing -- Part 4: Test techniques, ISO/IEC/IEEE 29119-4:2015, 4.6).

Contracted Software. Software created for a project by a contractor or subcontractor.

Cybersecurity. The protection of information and information systems from unauthorized access,

use, disclosure, disruption, modification, or destruction in order to provide confidentiality,

integrity, and availability.

 43

Cyclomatic Complexity. Cyclomatic complexity is a software metric used to indicate the

complexity of a program. It is a quantitative measure of the number of linearly independent paths

through a function’s source code.

Data. Information for computer processing (e.g., numbers, text, images, and sounds in a form that

is suitable for storage in or processing by a computer).

Defect. Any occurrence in a software product that is determined to be incomplete or incorrect

relative to the software requirements, expectations for the software, and/or program standards.

(Source: NASA-STD-8739.9)

Embedded Computer System. A computer system that is part of a larger system and performs

some of the requirements of that system. (Source: ISO/IEC/IEEE 24765)

Embedded Software. Software that is part of a larger system and performs some of the

requirements of that system. (Source: ISO/IEC/IEEE 24765)

Ensure. To secure or guarantee, to make sure or certain.

Establish and Maintain. Formulation, documentation, use/deployment, and current maintenance

of the object (usually a document, requirement, process, or policy) by the responsible project,

organization, or individual.

Failure. The behavior of the software or system component when a fault is encountered,

producing an incorrect or undesired effect of a specified severity. (Source: NASA-STD-8739.9)

Fault. The manifestation of an error in software that may cause a failure. (Source: NASA-STD-

8719.24 Annex)

Freeware. Software that is proprietary and that is available for use at no monetary cost. In other

words, freeware may be used without payment but may usually not be modified, re-distributed, or

reverse-engineered without the author’s permission.

Glueware. Software created to connect the off-the-shelf software/reused software with the rest of

the system. It may take the form of software that modifies interfaces or add missing functionality,

“firewalls” that isolate the off-the-shelf software, or software that check inputs and outputs to the

off-the-shelf software and may modify to prevent failures.

Government Off-the-Shelf Software. Government Off-the-Shelf Software refers to Government-

created software, usually from another project. The software was not created by the current

developers (see software reuse). Usually, the source code is included and documentation,

including test and analysis results, is available; (e.g., the Government is responsible for the

Government off-the-shelf (GOTS) software to be incorporated into another system).

Independent Verification and Validation (IV&V). Verification and validation performed by an

organization that is technically, managerially, and financially independent of the development

 44

organization. (Source: ISO/IEC/IEEE 24765) The NASA requirements for IV&V are defined in

the NASA-STD-8739.8.

Information Technology. Any equipment or interconnected system or subsystem of equipment

that is used in the automatic acquisition, storage, manipulation, management, movement, control,

display, switching, interchange, transmission, or reception of data or information by an executive

agency. IT also includes computers, ancillary equipment (including imaging peripherals, input,

output, and storage devices necessary for security and surveillance), peripheral equipment

designed to be controlled by the central processing unit of a computer; software; firmware; and

similar procedures, services (including support services), and related resources, but does not

include any equipment acquired by a Federal contractor incidental to a Federal contract. (Source:

NPR 7120.7)

Insight. An element of Government surveillance that monitors contractor compliance using

Government-identified metrics and contracted milestones. Insight is a continuum that can range

from low intensity such as reviewing quarterly reports to high intensity such as performing

surveys and reviews. (Source: NPR 7123.1)

Legacy and Heritage Software. Software products (architecture, code, requirements) written

specifically for one project and then, without prior planning during its initial development, found

to be useful for other projects. See software reuse.

Major Engineering/Research Facility. Used in this document to show research, development,

test, or simulation facilities representing a significant NASA investment (facilities with a Current

Replace Value equal to or greater than 50 million dollars) which contains software that supports

programs and projects managed under NPR 7120.5, NPR 7120.7, or NPR 7120.8, and that have a

Mission Dependency Index value equal to or greater than 70.

MC/DC. Modified condition/decision coverage (MC/DC) is a code coverage criterion used in

software testing. MC/DC requires all of the below during testing: Each condition in a decision is

shown to independently affect the outcome of the decision. Independence of a condition is shown

by proving that only one condition changes at a time.

Mission Critical. Item or function that should retain its operational capability to assure no mission

failure (i.e., for mission success - meeting all mission objectives and requirements for performance

and safety). (Source: NPR 8715.3)

Mission Critical Software. Software that can cause, contribute to, or mitigate the loss of

capabilities that are essential to the primary mission objectives.

Mobile Application. A mobile application is an application built using native code for the device

or a software Web application that is distributed through the device specific marketplace. Web

applications presented via a mobile browser are not considered mobile applications.

Model. A description or representation of a system, entity, phenomena, or process. (Source:

NASA-STD-7009) Only for this document, the term “model” refers to models implemented in

software.

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

 45

Modified Off-the-Shelf Software (MOTS). When COTS or legacy and heritage software is

reused, or heritage software is changed, the product is considered “modified.” The changes can

include all or part of the software products and may involve additions, deletions, and specific

alterations. An argument can be made that any alterations to the code and design of an off-the-

shelf software component constitute “modification,” but the common usage allows for some

percentage (less than five percent of the code changes) of change before the off-the-shelf software

is declared to be modified off-the-shelf (MOTS) software. Modified Off-the-Shelf Software may

include the changes to the application shell or glueware to add or protect against certain features

and not to the off-the-shelf software system code directly. When less than 30 percent of the

existing code changes, the product can be considered “modified.” If more than 30 percent of the

code changes or if the new code is added, the software should be considered a new software

development.

Off-the-Shelf Software. Software not developed in-house or by a contractor for the specific

project now underway. The software is developed for a purpose different from the current project.

Used in practice as an umbrella for COTS, GOTS, MOTS, OSS, freeware, shareware, trial

software, demonstration software, legacy software, heritage software, and reuse software.

Open-Source Software. Software where its human-readable source code is made broadly

available without cost under an OSS license, which provides conditions for use, reuse,

modification/improvement, and redistribution; and often where the software development,

management, and planning is done publicly, or easily observable by an individual or organization

not previously connected with its open source project.

Primary Mission Objectives. Outcomes expected to be accomplished, which are closely

associated with the reason the mission was proposed, funded, developed, and operated (e.g.,

objectives related to top-level requirements or their flow down).

Process Asset Library. A collection of process asset holdings that may be used by an

organization or project. (Source: CMMI® for Systems Engineering/Software

Engineering/Integrated Product and Process Development Supplier Sourcing.)

Program. A strategic investment by a Mission Directorate or Mission Support Office that has a

defined architecture and technical approach, requirements, funding level, and a management

structure that initiates and directs one or more projects. A program defines a strategic direction

that the Agency has identified as critical.

Programmable Logic Device. A semiconductor device based on a matrix of configurable logic

blocks connected via a configurable interconnect. The circuitry (combinational/sequential logic,

memory/storage, input/output) in a PLD is configured to meet design requirements for a desired

application after device manufacturing.

Project. A specific investment having defined goals, objectives, requirements, life cycle cost, a

beginning, and an end. A project yields new or revised products or services that directly address

NASA’s strategic needs. They may be performed wholly in-house; by Government, industry,

academia partnerships; or through contracts with private industry.

 46

Project Manager. A generic term that represents the position in charge of the project. A project

manager could be designated as a project lead, project principal investigator, project scientist,

research director, project executive, or some other term, as defined in the project’s governing

document. A project manager is responsible for the formulation and implementation of the R&T

project, per the governing document in coordination with the program manager. (NPR 7120.5

defines the roles and responsibilities for this position).

Requirements Volatility. The total number of requirements compared to requirement changes

over time. It may include additions, changes, and reduction of requirements.

Risk Management. An organized, systematic decision-making process that efficiently identifies,

analyzes, plans, tracks, controls, communicates, and documents risk to increase the likelihood of

achieving program/project goals. (Source: NPR 8715.3)

Safety Critical. A term describing any condition, event, operation, process, equipment, or system

that could cause or lead to severe injury, major damage, or mission failure if performed or built

improperly, or allowed to remain uncorrected. (Source NPR 8715.3)

Scripts. A sequence of automated computer commands embedded in a program that tells the

program to execute a specific procedure (e.g., files with monitoring, logic, or commands used by

software to automate a process or procedure).

Simulation. The imitation of the behavioral characteristics of a system, entity, phenomenon, or

process. (Source: NASA-STD-7009) Only for the purpose of this document, the term “simulation”

refers to only those simulations that are implemented in software.

Shareware. Software that is available free of charge and often distributed informally for

evaluation, after which a fee may be requested for continued use.

Software. In this directive, “software” is defined as (1) computer programs, procedures, and

associated documentation and data pertaining to the operation of a computer system (IEEE 828-

2012, 2.1), (2) all or a part of the programs, procedures, rules, and associated documentation of an

information processing system (ISO/IEC 19770-5:2015, Information technology, 3.34), (3)

program or set of programs used to run a computer (ISO/IEC 26514:2008, Systems and software

engineering–requirements for designers and developers of user documentation, 4.46) (4) all or

part of the programs which process or support the processing of digital information (ISO/IEC

19770-1:2017, Information technology – IT asset management – Part 1: IT asset management

systems--Requirements, 3.49), and (5) part of a product that is the computer program or the set of

computer programs (ISO/IEC/IEEE 26513:2017, Systems and software engineering–requirements

for testers and reviewers of information for users, 3.34). This definition applies to software

developed by NASA, software developed for NASA, software maintained by or for NASA,

COTS, GOTS, MOTS, OSS, reused software components, auto-generated code, embedded

software, the software executed on processors embedded in programmable logic devices (see

NASA-HDBK-4008), legacy, heritage, applications, freeware, shareware, trial or demonstration

software, and open-source software components.

Software Architecture. The software architecture of a program or computing system is the

structure or structures of the system, which comprise software components, the properties of those

 47

components, and the relationships between them. The term also refers to documentation of a

system’s software architecture. Documenting software architecture facilitates communication

between stakeholders, documents early decisions about high-level design, and allows reuse of

design components and patterns between projects.

Software Assurance. The planned and systematic set of activities that ensure that software life

cycle processes and products conform to requirements, standards, and procedures. For NASA, this

includes the disciplines of Software Quality (functions of Software Quality Engineering, Software

Quality Assurance, and Software Quality Control), Software Safety, Software Reliability, Mission

Software Cybersecurity Assurance, Software Verification and Validation, and IV&V.

Software Engineering. The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software (i.e., the application of engineering to

software). (Source: ISO/IEC/IEEE 24765)

Software Item. Source code, object code, control code, control data, or a collection of these items.

Software Maintenance. (1) Totality of activities required to provide cost-effective support to a

software system. (2) Entitlement of additional rights (such as additional functionality, upgrade,

or support) for a previously granted software entitlement. (3) A set of services a Publisher can

sell to a Customer for the ongoing development and delivery of software bug fixes and product

upgrades.

Software Peer Review and Inspection. A visual examination of a software product to detect and

identify software anomalies, including errors and deviations from standards and specifications.

(Source: IEEE 1028). Refer to NASA-STD-8739.9 for guidelines for software peer reviews or

inspections.

Software Reuse. A software product developed for one use but having other uses or one

developed specifically to be usable on multiple projects or in multiple roles on one project.

Examples include, but are not limited to, COTS products, acquirer-furnished software products,

software products in reuse libraries, and pre-existing developer software products.

Software Suppliers. An organization or individual that enters into an agreement with the acquirer

for the supply of a software product or service or individual or organization that enters into a

contract with the acquirer for the supply of a software system, software product, or software

service under the terms of the contract or an organization or part of an organization or individual

that enters into an agreement with the application management organization for the supply of a

software product or software service. Software Suppliers includes NASA in-house software

development.

Software Validation. Confirmation that the product, as provided (or as it will be provided),

fulfills its intended use. In other words, validation ensures that “you built the right thing.” (Source:

IEEE 1012, IEEE Standard for Software Verification and Validation)

Software Verification. Confirmation that products properly reflect the requirements specified for

them. In other words, verification ensures that “you built it right.” (Source: IEEE 1012)

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://shop.ieee.org/ieeestore/
http://shop.ieee.org/ieeestore/
http://shop.ieee.org/ieeestore/

 48

Static Analysis. The process of evaluating a system or component based on its form, structure,

content, or documentation. (Source: ISO/IEC/IEEE 24765)

Subsystem. A secondary or subordinate system within a larger system. (Source: ISO/IEC/IEEE

24765)

System. The combination of elements that function together to produce the capability required to

meet a need. The elements include hardware, software, equipment, facilities, personnel, processes,

and procedures needed for this purpose. (Source: NPR 7123.1)

Tailoring. The process used to adjust a prescribed requirement to accommodate the needs of a

specific task or activity (e.g., program or project). Tailoring may result in changes, subtractions, or

additions to a typical implementation of the requirement.

Uncertainty. (1) The estimated amount or percentage by which an observed or calculated value

may differ from the true value. (2) A broad and general term used to describe an imperfect state of

knowledge or a variability resulting from a variety of factors including, but not limited to, lack of

knowledge, the applicability of information, physical variation, randomness or stochastic

behavior, indeterminacy, judgment, and approximation. (Source: NPR 8000.4, Agency Risk

Management Procedural Requirements).

Unit Test. (1) Testing of individual routines and modules by the developer or an independent

tester (ISO/IEC/IEEE 24765). (2) A test of individual programs or modules in order to ensure that

there are no analysis or programming errors (ISO/IEC 2382-20). (3) Test of individual hardware

or software units or groups of related units. (ISO/IEC/IEEE 24765)

Validation. (1) Confirmation, through the provision of objective evidence, that the requirements

for a specific intended use or application have been fulfilled (ISO/IEC 25000:2014 Systems and

software Engineering--Systems and software product Quality Requirements and Evaluation

(SQuaRE) -- Guide to SQuaRE, 4.41) (ISO/IEC/IEEE 12207:2017 Systems and software

engineering--Software life cycle processes, 3.1.71) (ISO/IEC/IEEE 15288:2015 Systems and

software engineering--System life cycle processes, 4.1.53) (ISO/IEC TS 24748-1:2016 Systems

and software engineering--Life cycle management--Part 1: Guide for life cycle management,

2.61), (2) process of providing evidence that the system, software, or hardware and its associated

products satisfy requirements allocated to it at the end of each life cycle activity, solve the right

problem (e.g., correctly model physical laws, implement business rules, and use the proper system

assumptions), and satisfy intended use and user needs (IEEE 1012-2016, IEEE Standard for

Software Verification and Validation, 3.1.35), (3) the assurance that a product, service, or system

meets the needs of the customer and other identified stakeholders. It often involves acceptance and

suitability with external customers. (A Guide to the Project Management Body of Knowledge

(PMBOK(R) Guide) -- Fifth Edition), and (4) process of evaluating a system or component during

or at the end of the development process to determine whether it satisfies specified requirements

(IEEE 1012-2016, IEEE Standard for Software Verification and Validation, 3.1) Note: Validation

in a system life cycle context is the set of activities ensuring and gaining confidence that a system

is able to accomplish its intended use, goals, and objectives. The right system has been built.

Validation demonstrates that the system can be used by the users for their specific tasks.

“Validated” is used to designate the corresponding status. [ISO 9000] Multiple validations can be

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://shop.ieee.org/ieeestore/
http://shop.ieee.org/ieeestore/
http://www.pmibookstore.org/PMIBookStore/index.aspx
http://www.pmibookstore.org/PMIBookStore/index.aspx
http://shop.ieee.org/ieeestore/

 49

carried out if there are different intended uses.

 50

Appendix B. Acronyms
CAD/CAM Computer-Aided Design/and Computer-Aided Manufacturing

CE Chief Engineer

CHMO Chief Health and Medical Officer

CIO Chief Information Officer

CMMI® Capability Maturity Model® Integration

CMMI®-DEV Capability Maturity Model® Integration® (CMMI®) for Development

CMU Carnegie Mellon University

CO Contracting Officer

COR Contracting Officer Representative

COTS Commercial-Off-the-Shelf

CSCI Computer Software Configuration Item

CSMA Chief, Safety and Mission Assurance

EDL Entry, Descent, and Landing

ETA Engineering Technical Authority

EVA Extra Vehicular Activity

FAR Federal Acquisition Regulations

FFRDC Federally Funded Research and Development Center

GOTS Government-Off-the-Shelf

HDBK Handbook

IEEE Institute of Electrical and Electronics Engineers

IPEP IV&V Project Execution Plan

IT Information Technology

IV&V Independent Verification and Validation

JPL Jet Propulsion Laboratory

KSLOC

MC/DC

MDAA

Kilo/Thousand Source Lines of Code

Modified Condition/Decision Coverage

Mission Directorate Associate Administrator

MOTS Modified Off-the-Shelf

NASA National Aeronautics and Space Administration

NPD NASA Policy Directive

NPR NASA Procedural Requirements

NTR New Technology Report

OCE Office of the Chief Engineer

OCHMO Office of Chief Health and Medical Officer

OCIO Office of Chief Information Officer

OP Office of Procurement

OSMA Office of Safety and Mission Assurance

OSS Open-Source Software

PLD Programmable Logic Devices

POC Point of Contact

SAISO Senior Agency Information Security Officer

SCM Software Configuration Management

SEI Software Engineering Institute

SMA Safety and Mission Assurance

SOW Statement of Work

SPAN Software Process Across NASA

 51

SWE Software Engineering

TA

US

WBS

Technical Authority

United States

Work Breakdown Structure

 52

Appendix C. Requirements Mapping Matrix

C.1 The rationale for the requirements is contained in the NASA-HDBK-2203. Programs/Projects

may substitute a matrix that documents their mapping with their particular Center’s

implementation of NPR 7150.2, if applicable. See NASA-HDBK-2203 for requirements mapping

matrices organized by class, tailoring field for each requirement, tailoring rationale, and approval

signature lines.

C.2 The Requirements Mapping Matrix documents the program/project’s mappings or intent to

comply with the requirements of this NPR or justification for tailoring. The matrix lists:

a. The section reference.

b. The unique requirement identifier.

c. The NPR 7150.2 requirement statement.

d. The Authority Level responsible for assessing a project’s requirements mapping matrices and

any requested tailoring from requirements in this NPR. The CIO, or the designee, has institutional

authority on all Class F software projects and has joint responsibility on the cybersecurity

requirements in Section 3.11.

e. The applicability of the requirements in this NPR to specific systems and subsystems within the

Agency’s investment areas, programs, and projects is determined through the use of the NASA-

wide definition of software classes.

C.3 Tailoring Guidance

X - Indicates an invoked requirement by this NPR consistent with Software Classification (ref.

SWE-139). May be tailored with TA approval (ref. Chapter 2.2).

Blank - Optional/Not invoked by this NPR.

Center - Center Director or the Center Director’s designated ETA, the Center Director’s

designated SMA TA, and the CHMO designated for Health and Medical TA. The NASA CIO, or

the designee, has institutional authority on all Class F software projects and has joint responsibility

with the ETA on the cybersecurity requirements in Section 3.11 per the direction in the

Requirements Mapping Matrix.

CIO - The NASA CIO, or the designee Center CIO, has institutional authority on all Class F

software projects and has joint responsibility with the ETA on the cybersecurity requirements in

section 3.11, per the direction in the Requirements Mapping Matrix.

Each requirement marked ‘X’ for the project’s software classification(s) should be addressed in

the Requirements Mapping Matrix. All requirements can be tailored per the guidance in this

directive. Requirements that are not applicable to a given project, such as the IV&V requirements,

should be tailored out in the Requirements Mapping Matrix with justification.

 53

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

3.0 Software Management Requirements
3.1 Software Life Cycle Planning
3.1.2 033 The project manager shall assess options for software acquisition versus

development.

Center X X X X X CIO X

3.1.3 013 The project manager shall develop, maintain, and execute software plans,

including security plans, that cover the entire software life cycle and, as a

minimum, address the requirements of this directive with approved tailoring.

Center X X X X X CIO X

3.1.4 024 The project manager shall track the actual results and performance of

software activities against the software plans.

a. Corrective actions are taken, recorded, and managed to closure.

b. Changes to commitments (e.g., software plans) that have been agreed to

by the affected groups and individuals are taken, recorded, and managed.

Center X X X X CIO X

3.1.5 034 The project manager shall define and document the acceptance criteria for

the software.

Center X X X X CIO X

3.1.6 036 The project manager shall establish and maintain the software processes,

software documentation plans, list of developed electronic products,

deliverables, and list of tasks for the software development that are required

for the project’s software developers, as well as the action required (e.g.,

approval, review) of the Government upon receipt of each of the

deliverables.

Center X X X X CIO X

3.1.7 037 The project manager shall define and document the milestones at which the

software developer(s) progress will be reviewed and audited.

Center X X X X CIO X

3.1.8 039 The project manager shall require the software developer(s) to periodically

report status and provide insight into software development and test

activities; at a minimum, the software developer(s) will be required to allow

the project manager and software assurance personnel to:

a. Monitor product integration.

b. Review the verification activities to ensure adequacy.

c. Review trades studies and source data.

d. Audit the software development processes and practices.

e. Participate in software reviews and technical interchange meetings.

Center X X X X CIO X

3.1.9 040 The project manager shall require the software developer(s) to provide

NASA with software products, traceability, software change tracking

information and nonconformances in electronic format, including software

development and management metrics.

Center X X X X CIO X

 54

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

3.1.10 042 The project manager shall require the software developer(s) to provide

NASA with electronic access to the source code developed for the project in

a modifiable format.

Center X X X X X CIO X

3.1.11 139 The project manager shall comply with the requirements in this NPR that are

marked with an “X” in Appendix C consistent with their software

classification.

Center X X X X X CIO X

3.1.12 121 Where approved, the project manager shall document and reflect the tailored

requirement in the plans or procedures controlling the development,

acquisition, and deployment of the affected software.

Center X X X X X CIO X

3.1.13 125 Each project manager with software components shall maintain a

requirements mapping matrix or multiple requirements mapping matrices

against requirements in this NPR, including those delegated to other parties

or accomplished by contract vehicles or Space Act Agreements.

Center X X X X X CIO X

3.1.14 027 The project manager shall satisfy the following conditions when a COTS,

GOTS, MOTS, OSS, or reused software component is acquired or used:

a. The requirements to be met by the software component are identified.

b. The software component includes documentation to fulfill its intended

purpose (e.g., usage instructions).

c. Proprietary rights, usage rights, ownership, warranty, licensing rights,

transfer rights, and conditions of use (e.g., required copyright, author, and

applicable license notices within the software code, or a requirement to

redistribute the licensed software only under the same license (e.g., GNU

GPL, ver. 3, license)) have been addressed and coordinated with Center

Intellectual Property Counsel.

d. Future support for the software product is planned and adequate for

project needs.

e. The software component is verified and validated to the same level

required to accept a similar developed software component for its intended

use.

f. The project has a plan to perform periodic assessments of vendor reported

defects to ensure the defects do not impact the selected software

components.

Center X X X X CIO X

3.2 Software Cost Estimation
3.2.1 015 To better estimate the cost of development, the project manager shall

establish, document, and maintain:

a. Two cost estimate models and associated cost parameters for all Class A

Center X X X X X

 55

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

and B software projects that have an estimated project cost of $2 million or

more.

b. One software cost estimate model and associated cost parameter(s) for all

Class A and Class B software projects that have an estimated project cost of

less than $2 million.

c. One software cost estimate model and associated cost parameter(s) for all

Class C and Class D software projects.

d. One software cost estimate model and associated cost parameter(s) for all

Class F software projects.

3.2.2 151 The project manager’s software cost estimate(s) shall satisfy the following

conditions:

a. Covers the entire software life cycle.

b. Is based on selected project attributes (e.g., programmatic

assumptions/constraints, assessment of the size, functionality, complexity,

criticality, reuse code, modified code, and risk of the software processes and

products).

c. Is based on the cost implications of the technology to be used and the

required maturation of that technology.

d. Incorporates risk and uncertainty, including end state risk and threat

assessments for cybersecurity.

e. Includes the cost of the required software assurance support.

f. Includes other direct costs.

Center X X X X CIO X

3.2.3 174 The project manager shall submit software planning parameters, including

size and effort estimates, milestones, and characteristics, to the Center

measurement repository at the conclusion of major milestones.

Center X X X X

3.3 Software Schedules
3.3.1 016 The project manager shall document and maintain a software schedule that

satisfies the following conditions:

a. Coordinates with the overall project schedule.

b. Documents the interactions of milestones and deliverables between

software, hardware, operations, and the rest of the system.

c. Reflects the critical dependencies for software development activities.

d. Identifies and accounts for dependencies with other projects and cross-

program dependencies.

Center X X X X CIO X

3.3.2 018 The project manager shall regularly hold reviews of software schedule

activities, status, performance metrics, and assessment/analysis results with

the project stakeholders and track issues to resolution.

Center X X X CIO X

 56

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

3.3.3 046 The project manager shall require the software developer(s) to provide a

software schedule for the project’s review and schedule updates as

requested.

Center X X X X CIO X

3.4 Software Training
3.4.1 017 The project manager shall plan, track, and ensure project specific software

training for project personnel.

Center X X X CIO X

3.5 Software Classification Assessments
3.5.1 020 The project manager shall classify each system and subsystem containing

software in accordance with the highest applicable software classification

definitions for Classes A, B, C, D, E, and F software in Appendix D.

Center X X X X X CIO X

3.5.2 176 The project manager shall maintain records of each software classification

determination, each software Requirements Mapping Matrix, and the results

of each software independent classification assessments for the life of the

project.

Center X X X X X CIO X

3.6 Software Assurance and Software Independent Verification &

Validation

3.6.1 022 The project manager shall plan and implement software assurance, software

safety, and IV&V (if required) per NASA-STD-8739.8, Software Assurance

and Software Safety Standard.

Center X X X X X

3.6.2 141 For projects reaching Key Decision Point A, the program manager shall

ensure that software IV&V is performed on the following categories of

projects:

a. Category 1 projects as defined in NPR 7120.5.

b. Category 2 projects as defined in NPR 7120.5 that have Class A or Class

B payload risk classification per NPR 8705.4.

c. Projects selected explicitly by the NASA Chief, Safety and Mission

Assurance to have software IV&V.

HQ

OSMA
X X

3.6.3 131 If software IV&V is performed on a project, the project manager shall

ensure an IPEP is developed, approved, maintained, and executed in

accordance with the IV&V criteria defined in NASA-STD-8739.8.

Center X X

3.6.4 178 If software IV&V is performed on a project, the project manager shall

ensure that IV&V is provided access to development artifacts, products,

source code, and data required to perform the IV&V analysis efficiently and

effectively.

Center X X

3.6.5 179 If software IV&V is performed on a project, the project manager

shall provide responses to IV&V submitted issues and risks, and track these

Center X X

 57

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

issues and risks to closure.

3.7 Safety-critical Software
3.7.1 205 The project manager, in conjunction with the SMA organization, shall

determine if each software component is considered to be safety-critical per

the criteria defined in NASA-STD-8739.8.

Center X X X X X

3.7.2 023 If a project has safety-critical software, the project manager shall implement

the safety-critical software requirements contained in NASA-STD-8739.8.

Center X X X X

3.7.3 134 If a project has safety-critical software or mission-critical software, the

project manager shall implement the following items in the software:

a. The software is initialized, at first start and restarts, to a known safe state.

b. The software safely transitions between all predefined known states.

c. Termination performed by software functions is performed to a known

safe state.

d. Operator overrides of software functions require at least two independent

actions by an operator.

e. Software rejects commands received out of sequence when execution of

those commands out of sequence can cause a hazard.

f. The software detects inadvertent memory modification and recovers to a

known safe state.

g. The software performs integrity checks on inputs and outputs to/from the

software system.

h. The software performs prerequisite checks prior to the execution of

safety-critical software commands.

i. No single software event or action is allowed to initiate an identified

hazard.

j. The software responds to an off-nominal condition within the time needed

to prevent a hazardous event.

k. The software provides error handling.

l. The software can place the system into a safe state.

Center X X X X

3.7.4 219 If a project has safety-critical software, the project manager shall ensure that

there is 100 percent code test coverage using the Modified

Condition/Decision Coverage (MC/DC) criterion for all identified safety-

critical software components.

Center X X X X

3.7.5 220 If a project has safety-critical software, the project manager shall ensure all

identified safety-critical software components have a cyclomatic complexity

value of 15 or lower. Any exceedance shall be reviewed and waived with

Center X X X X

 58

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

rationale by the project manager or technical approval authority.

3.8 Automatic Generation of Software Source Code
3.8.1 146 The project manager shall define the approach to the automatic generation of

software source code including:

a. Validation and verification of auto-generation tools.

b. Configuration management of the auto-generation tools and associated

data.

c. Description of the limits and the allowable scope for the use of the auto-

generated software.

d. Verification and validation of auto-generated source code using the same

software standards and processes as hand-generated code.

e. Monitoring the actual use of auto-generated source code compared to the

planned use.

f. Policies and procedures for making manual changes to auto-generated

source code.

g. Configuration management of the input to the auto-generation tool, the

output of the auto-generation tool, and modifications made to the output of

the auto-generation tools.

Center X X X CIO X

3.8.2 206 The project manager shall require the software developers and custom

software suppliers to provide NASA with electronic access to the models,

simulations, and associated data used as inputs for auto-generation of

software.

Center X X X X CIO X

3.9 Software Development Processes and Practices
3.9.2 032 The project manager shall acquire, develop, and maintain software from an

organization with a non-expired CMMI®-DEV rating as measured by a

CMMI® Institute Certified Lead Appraiser as follows:

a. For Class A software: CMMI®-DEV Maturity Level 3 Rating or higher

for software.

b. For Class B software (except Class B software on NASA Class D

payloads, as defined in NPR 8705.4): CMMI®-DEV Maturity Level 2

Rating or higher for software.

HQ OCE

and HQ

OSMA

X X

3.10 Software Reuse
3.10.1 147 The project manager shall specify reusability requirements that apply to its

software development activities to enable future reuse of the software,

including the models, simulations, and associated data used as inputs for

Center X X X X CIO X

 59

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

auto-generation of software, for U.S. Government purposes.
3.10.2 148 The project manager shall evaluate software for potential reuse by other

projects across NASA and contribute reuse candidates to the appropriate

NASA internal sharing and reuse software system. However, if the project

manager is not a civil servant, then a civil servant will pre-approve all such

software contributions; all software contributions should include, at a

minimum, the following information:

a. Software Title.

b. Software Description.

c. The Civil Servant Software Technical POC for the software product.

d. The language or languages used to develop the software.

e. Any third party code contained therein and the record of the requisite

license or permission received from the third party permitting the

Government’s use and any required markings (e.g., required copyright,

author, applicable license notices within the software code, and the source of

each third-party software component (e.g., software URL & license URL)),

if applicable.

f. Release notes.

Center X X X X X CIO X

3.11 Software Cybersecurity
3.11.2 156 The project manager shall perform a software cybersecurity assessment on

the software components per the Agency security policies and the project

requirements, including risks posed by the use of COTS, GOTS, MOTS,

OSS, or reused software components.

Center

and

Center

CIO

X X X X X CIO X

3.11.3 154 The project manager shall identify cybersecurity risks, along with their

mitigations, in flight and ground software systems and plan the mitigations

for these systems.

Center

and

Center

CIO

X X X X

3.11.4 157 The project manager shall implement protections for software systems with

communications capabilities against unauthorized access per the

requirements contained in the Space System Protection Standard, NASA-

STD-1006.

Center

and

Center

CIO

X X X X

3.11.5 159 The project manager shall test the software and record test results for the

required software cybersecurity mitigation implementations identified from

the security vulnerabilities and security weaknesses analysis.

Center

and

Center

CIO

X X X X CIO X

3.11.6 207 The project manager shall identify, record, and implement secure coding Center X X X X

 60

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

practices. and

Center

CIO

3.11.7 185 The project manager shall verify that the software code meets the project’s

secure coding standard by using the results from static analysis tool(s).

Center

and

Center

CIO

X X X X CIO X

3.11.8 210 The project manager shall identify software requirements for the collection,

reporting, and storage of data relating to the detection of adversarial actions.

Center X X X CIO X

3.12 Software Bi-Directional Traceability
3.12.1 052 The project manager shall perform, record, and maintain bi-directional

traceability between the following software elements: (See Table in 3.12.1)
Center X X X X CIO X

4.0 Software Engineering (Life Cycle) Requirements
4.1 Software Requirements
4.1.2 050 The project manager shall establish, capture, record, approve, and maintain

software requirements, including requirements for COTS, GOTS, MOTS,

OSS, or reused software components, as part of the technical specification.

Center X X X X CIO X

4.1.3 051 The project manager shall perform software requirements analysis based on

flowed-down and derived requirements from the top-level systems

engineering requirements, safety and reliability analyses, and the hardware

specifications and design.

Center X X X

4.1.4 184 The project manager shall include software related safety constraints,

controls, mitigations and assumptions between the hardware, operator, and

software in the software requirements documentation.

Center X X X

4.1.5 053 The project manager shall track and manage changes to the software

requirements.

Center X X X X CIO X

4.1.6 054 The project manager shall identify, initiate corrective actions, and track until

closure inconsistencies among requirements, project plans, and software

products.

Center X X X X CIO X

4.1.7 055 The project manager shall perform requirements validation to ensure that the

software will perform as intended in the customer environment.

Center X X X X CIO X

4.2 Software Architecture
4.2.3 057 The project manager shall transform the requirements for the software into a

recorded software architecture.

Center X X X

 61

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

4.2.4 143 The project manager shall perform a software architecture review on the

following categories of projects:

a. Category 1 Projects as defined in NPR 7120.5.

b. Category 2 Projects as defined in NPR 7120.5 that have Class A or Class

B payload risk classification per NPR 8705.4.

Center X X X

4.3 Software Design
4.3.2 058 The project manager shall develop, record, and maintain a software design

based on the software architectural design that describes the lower-level

units so that they can be coded, compiled, and tested.

Center X X X

4.4 Software Implementation
4.4.2 060 The project manager shall implement the software design into software code. Center X X X CIO X
4.4.3 061 The project manager shall select, define, and adhere to software coding

methods, standards, and criteria.

Center X X X X CIO X

4.4.4 135 The project manager shall use static analysis tools to analyze the code during

the development and testing phases to, at a minimum, detect defects,

software security, code coverage, and software complexity.

Center X X X X CIO X

4.4.5 062 The project manager shall unit test the software code. Center X X X X CIO X
4.4.6 186 The project manager shall assure that the unit test results are repeatable. Center X X X X CIO X
4.4.7 063 The project manager shall provide a software version description for each

software release.

Center X X X X CIO X

4.4.8 136 The project manager shall validate and accredit the software tool(s) required

to develop or maintain software.

Center X X X

4.5 Software Testing
4.5.2 065 The project manager shall establish and maintain:

a. Software test plan(s).

b. Software test procedure(s).

c. Software test(s), including any code specifically written to perform test

procedures.

d. Software test report(s).

Center X X X X CIO X

4.5.3 066 The project manager shall test the software against its requirements. Center X X X X CIO X
4.5.4 187 The project manager shall place software items under configuration

management prior to testing.

Center X X X CIO X

4.5.5 068 The project manager shall evaluate test results and record the evaluation. Center X X X X CIO X

 62

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

4.5.6 070 The project manager shall use validated and accredited software models,

simulations, and analysis tools required to perform qualification of flight

software or flight equipment.

Center X X X

4.5.7 071 The project manager shall update the software test and verification plan(s)

and procedure(s) to be consistent with software requirements.

Center X X X X CIO X

4.5.8 073 The project manager shall validate the software system on the targeted

platform or high-fidelity simulation.

Center X X X

4.5.9 189 The project manager shall ensure that the code coverage measurements for

the software are selected, implemented, tracked, recorded, and reported.

Center X X X X

4.5.10 190 The project manager shall verify code coverage is measured by analysis of

the results of the execution of tests.
Center X X X

4.5.11 191 The project manager shall plan and conduct software regression testing to

demonstrate that defects have not been introduced into previously integrated

or tested software and have not produced a security vulnerability.

Center X X X CIO X

4.5.12 192 The project manager shall verify through test the software requirements that

trace to a hazardous event, cause, or mitigation technique.

Center X X X X

4.5.13 193 The project manager shall develop acceptance tests for loaded or uplinked

data, rules, and code that affects software and software system behavior.

Center X X CIO X

4.5.14 211 The project manager shall test embedded COTS, GOTS, MOTS, OSS, or

reused software components to the same level required to accept a custom

developed software component for its intended use.

Center X X X

4.6 Software Operations, Maintenance, and Retirement
4.6.2 075 The project manager shall plan and implement software operations,

maintenance, and retirement activities.

Center X X X X CIO X

4.6.3 077 The project manager shall complete and deliver the software product to the

customer with appropriate records, including as-built records, to support the

operations and maintenance phase of the software’s life cycle.

Center X X X X CIO X

4.6.4 194 The project manager shall complete, prior to delivery, verification that all

software requirements identified for this delivery have been met or

dispositioned, that all approved changes have been implemented and that all

defects designated for resolution prior to delivery have been resolved.

Center X X X X CIO X

4.6.5 195 The project manager shall maintain the software using standards and

processes per the applicable software classification throughout the

maintenance phase.

Center X X X X CIO X

4.6.6 196 The project manager shall identify the records and software tools to be

archived, the location of the archive, and procedures for access to the

Center X X X X CIO X

 63

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

products for software retirement or disposal.

5.0 Supporting Software Life Cycle Requirements
5.1 Software Configuration Management
5.1.2 079 The project manager shall develop a software configuration management

plan that describes the functions, responsibilities, and authority for the

implementation of software configuration management for the project.

Center X X X X CIO X

5.1.3 080 The project manager shall track and evaluate changes to software products. Center X X X X CIO X
5.1.4 081 The project manager shall identify the software configuration items (e.g.,

software records, code, data, tools, models, scripts) and their versions to be

controlled for the project.

Center X X X X CIO X

5.1.5 082 The project manager shall establish and implement procedures to:

a. Designate the levels of control through which each identified software

configuration item is required to pass.

b. Identify the persons or groups with authority to authorize changes.

c. Identify the persons or groups to make changes at each level.

Center X X X X CIO X

5.1.6 083 The project manager shall prepare and maintain records of the configuration

status of software configuration items.

Center X X X X CIO X

5.1.7 084 The project manager shall perform software configuration audits to

determine the correct version of the software configuration items and verify

that they conform to the records that define them.

Center X X X X CIO X

5.1.8 085 The project manager shall establish and implement procedures for the

storage, handling, delivery, release, and maintenance of deliverable software

products.

Center X X X X CIO X

5.1.9 045 The project manager shall participate in any joint NASA/developer audits. Center X X X CIO X
5.2 Software Risk Management
5.2 086 The project manager shall record, analyze, plan, track, control, and

communicate all of the software risks and mitigation plans.

Center X X X CIO X

5.3 Software Peer Reviews/Inspections
5.3.2 087 The project manager shall perform and report the results of software peer

reviews or software inspections for:

a. Software requirements.

b. Software plans, including cybersecurity.

c. Any design items that the project identified for software peer review or

software inspections according to the software development plans.

Center X X X CIO X

 64

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

d. Software code as defined in the software and or project plans.

e. Software test procedures.

5.3.3 088 The project manager shall, for each planned software peer review or

software inspection:

a. Use a checklist or formal reading technique (e.g., perspective based

reading) to evaluate the work products.

b. Use established readiness and completion criteria.

c. Track actions identified in the reviews until they are resolved.

d. Identify the required participants.

Center X X X

5.3.4 089 The project manager shall, for each planned software peer review or

software inspection, record necessary measurements.

Center X X X CIO X

5.4 Software Measurements
5.4.2 090 The project manager shall establish, record, maintain, report, and utilize

software management and technical measurements.

Center X X X

5.4.3 093 The project manager shall analyze software measurement data collected

using documented project-specified and Center/organizational analysis

procedures.

Center X X X

5.4.4 094 The project manager shall provide access to the software measurement data,

measurement analyses, and software development status as requested to the

sponsoring Mission Directorate, the NASA Chief Engineer, the Center TAs,

HQ SMA, and other organizations as appropriate.

Center X X X

5.4.5 199 The project manager shall monitor measures to ensure the software will meet

or exceed performance and functionality requirements, including satisfying

constraints.

Center X X X

5.4.6 200 The project manager shall collect, track, and report software requirements

volatility metrics.

Center X X

5.5 Software Non-conformance or Defect Management
5.5.1 201 The project manager shall track and maintain software non-conformances

(including defects in tools and appropriate ground software).

Center X X X X CIO X

5.5.2 202 The project manager shall define and implement clear software severity

levels for all software non-conformances (including tools, COTS, GOTS,

MOTS, OSS, reused software components, and applicable ground systems).

Center X X X CIO X

5.5.3 203 The project manager shall implement mandatory assessments of reported

non-conformances for all COTS, GOTS, MOTS, OSS, and/or reused

software components.

Center X X X

 65

Table 2. Requirements Mapping Matrix

Section SWE

Requirement

Text

Class A-E

Authority

A B C D E Class F

 Authority

F

5.5.4 204 The project manager shall implement process assessments for all high

severity software non-conformances (closed loop process).

Center X X

 66

Appendix D. Software Classifications

D.1 The applicability of requirements in this directive to specific systems and subsystems

containing software is determined through the use of the NASA-wide software classification

structure. These definitions are based on: (1) usage of the software with or within a NASA

system, (2) criticality of the system to NASA’s major programs and projects, (3) extent to which

humans depend upon the system, (4) developmental and operational complexity, and (5) extent of

the Agency’s investment. Classes A through E cover engineering-related software. Class F cover

Business and Information Technology Infrastructure Software. Using the Requirements Mapping

Matrix, the number of applicable requirements and their associated rigor are scaled back for lower

software classes. Situations in which a project contains separate systems and subsystems having

different software classes are not uncommon.

D.2 For a given system or subsystem, software is expected to be uniquely defined within a single

class. If more than one software class appears to apply, then assign the higher of the classes to the

system/subsystem. Any potential discrepancies in classifying software within Classes A through--

E are to be resolved using the definitions and the five underlying factors listed in the previous

paragraph. Engineering and SMA provide dual TA chains for resolving classification issues. The

NASA Chief Engineer is the ultimate TA for software classification disputes concerning

definitions in this NPR.

 67

Class A: Human Rated Space Software Systems

a. Definition:

1. Human Space Flight Software Systems*: Ground and flight software systems developed or

operated by or for NASA needed to perform a primary mission objective of human space flight

and directly interact with human space flight systems. Limited to software required to perform

“vehicle, crew, or primary mission function,” as defined by software that is:

(a) Required to operate the vehicle or space asset (e.g., spacesuit, rover, or outpost), including

commanding of the vehicle or asset.

(b) Required to sustain a safe, habitable1 environment for the crew.

(c) Required to achieve the primary mission objectives.

(d) Required to directly prepare resources (e.g., data, fuel, power) that are consumed by the above

functions.

*Includes software involving launch, on-orbit, in space, surface operations, entry, descent, and

landing.

1 Current standards that address habitability and environmental health, including atmospheric composition and

pressure, air, and water quality and monitoring, acceleration, acoustics, vibration, radiation, thermal environment,

combined environmental effects, and human factors, are documented in NASA-Standard-3001 Volume 1, Space

Flight Human-System Standard: Crew Health, NASA-Standard-3001 Volume 2, Space Flight Human-System

Standard: Human Factors, Habitability, and Environmental Health, FAA HFDS - Human Factors Design Standard.

b. Examples:

Examples of Class A software (human-rated space flight) include, but are not limited to, the

mission phases listed below.

1. During Launch:

Abort modes and selection; separation control; range safety; crew interface (display and controls);

crew escape; critical systems monitoring and control; guidance, navigation, and control; and

communication and tracking.

2. On-Orbit/In Space:

Extravehicular activity (EVA); control of electrical power; payload control (including suppression

of hazardous satellite and device commands); critical systems monitoring and control; guidance,

navigation, and control; life support systems; crew escape; rendezvous and docking; failure

detection, isolation and recovery; communication and tracking; and mission operations.

3. On Ground:

 68

Pre-launch and launch operations; Mission Control Center (and Launch Control Center) front-end

processors; spacecraft commanding; vehicle processing operations; re-entry operations; flight

dynamics simulators used for ascent abort calls; and launch and flight controller stations for

human-crewed spaceflight.

4. Entry, Descent, and Landing (EDL):

Command and control; aero-surface control; power; thermal; fault protection; and communication

and tracking.

5. Surface Operations:

Planet/lunar surface EVA and communication and tracking.

c. Exclusions:

Class A does not include:

1. Software that happens to fly in space but is superfluous to mission objectives (e.g., software

contained in an iPod carried on board by an astronaut for personal use); or

2. Software that exclusively supports aeronautics, research and technology, and science conducted

without space flight applications; or

3. Systems (e.g., simulators, emulators, facilities) used to test Class A systems containing software

in a development environment.

 69

Class B: Non-Human Space Rated Software Systems or Large Scale Aeronautics Vehicles

a. Definitions:

1. Space Systems involve flight and ground software that should perform reliably to accomplish

primary mission objectives or major function(s) in non-human space rated systems. Included is

software involving launch, on orbit, in space, surface operations, entry, descent, and landing.

These systems are limited to software that is:

(a) Required to operate the vehicle or space asset (e.g., orbiter, lander, probe, flyby spacecraft,

rover, launch vehicle, or primary instrument) such as commanding of the vehicle or asset;

(b) Required to achieve the primary mission objectives; or

(c) Required to directly prepare resources (data, fuel, power) that are consumed by the above

functions.

2. Aeronautic Vehicles include large scale2 aeronautic software systems unique to NASA in which

the software:

(a) Is integral to the control of an airborne vehicle;

(b) Monitors and controls the cabin environment; or

(c) Monitors and controls the vehicle’s emergency systems.

This definition includes software for vehicles classified as “test,” “experimental,” or

“demonstration” that meets the above definition for Class B software. Also included are systems

in a test or demonstration where the software’s known and scheduled intended use is to be part of

a Class A or B software system.

2 Large-scale (life cycle cost exceeding $250M) fully integrated technology development system –

see NPR 7120.8.

b. Examples:

Examples of Class B software include, but are not limited to:

1. Space, Launch, Ground, EDL, and Surface Systems:

Propulsion systems; power systems; guidance navigation and control; fault protection; thermal

systems; command and control ground systems; planetary/lunar surface operations; hazard

prevention; primary instruments; science sequencing engine; simulations that create operational

EDL parameters; subsystems that could cause the loss of science return from multiple instruments;

flight dynamics and related data; and launch and flight controller stations for non-human

spaceflight.

2. Aeronautics Vehicles (Large Scale NASA Unique):

Guidance, navigation, and control; flight management systems; autopilot; propulsion systems;

power systems; emergency systems (e.g., fire suppression systems, emergency egress systems,

 70

emergency oxygen supply systems, traffic/ground collision avoidance system); and cabin pressure

and temperature control.

c. Exclusions:

Class B does not include:

1. Software that exclusively supports non-primary instruments on non-human space rated systems

(e.g., low-cost, non-primary, university supplied instruments); or

2. Systems (e.g., simulators, emulators, facilities) used in testing Class B systems containing

software in a development environment; or

3. Software for NASA Class D payloads, as defined in NPR 8705.4.

 71

Class C: Mission Support Software or Aeronautic Vehicles, or Major Engineering/Research

Facility Software

a. Definitions:

1. Space Systems include the following types of software:

(a) Flight or ground software necessary for the science return from a single (non-primary)

instrument;

(b) Flight or ground software used to analyze or process mission data;

(c) Other software for which a defect could adversely impact the attainment of some secondary

mission objectives or cause operational problems;

(d) Software used for the testing of space assets;

(e) Software used to verify system requirements of space assets by analysis; or

(f) Software for space flight operations not covered by Class A or B software.

2. Aeronautic Vehicles include systems for non-large scale aeronautic software systems in which

the software:

(a) Is integral to the control of an airborne vehicle;

(b) Monitors and controls the cabin environment; or

(c) Monitors and controls the vehicle’s emergency system.

Also included are systems on an airborne vehicle (including large-scale vehicles) that acquire,

store, or transmit the official record copy of flight or test data.

3. Major Engineering/Research Facility is systems that operate a major facility for research,

development, test, or evaluation (e.g., facility controls and monitoring, systems that operate

facility-owned instruments, apparatus, and data acquisition equipment).

4. Sounding Rockets and Sounding Rocket payloads.

5. Software for NASA Class D payloads, as defined in NPR 8705.4.

b. Examples:

Examples of Class C software include, but are not limited to:

1. Space Systems:

Software that supports prelaunch integration and test; mission data processing and analysis;

analysis software used in trend analysis and calibration of flight engineering parameters;

primary/major science data collection storage and distribution systems (e.g., Distributed Active

 72

Archive Centers); simulators, emulators, or facilities used to test Class A, B, or C software in

development; integration and test environments; software used to verify system-level requirements

associated with Class A, B, or C software by analysis (e.g., guidance, navigation, and control

system performance verification by analysis); simulators used for mission training; software

employed by network operations and control (which is redundant with systems used at tracking

complexes); command and control of non-primary instruments; ground mission support software

used for secondary mission objectives, real-time analysis, and planning (e.g., monitoring,

consumables analysis, mission planning); CubeSat mission software; SmallSat mission software;

sounding rocket software and sounding rocket experiments or payload software; and all software

on NASA Class D payloads, as defined in NPR 8705.4 to examples of Class C software.

2. Aeronautics Vehicles:

Guidance, navigation, and control; flight management systems; autopilot; propulsion systems;

power systems; emergency systems (e.g., fire suppression systems, emergency egress systems,

emergency oxygen supply systems, traffic/ground collision avoidance system); cabin pressure and

temperature control; in-flight telescope control software; aviation data integration systems;

automated flight planning systems and primary/major science data collection storage and

distribution systems (e.g., Distributed Active Archive Centers); sounding rockets and sounding

rocket experiments or payload software; flight software for free-flying unmanned aerial vehicles

(UAVs) in public airspace or over controlled ranges; Balloon Flight software and balloon flight

experiment software, and all software on NASA Class D pay loads, as defined in NPR 8705.4.

3. Major Engineering/Research Facility:

Major Center facilities; data acquisition and control systems for wind tunnels, vacuum chambers,

and rocket engine test stands; ground-based software used to operate a major facility telescope;

and major aeronautic applications facilities (e.g., air traffic management systems; high fidelity

motion based simulators).

c. Exclusions:

Class C does not include:

Systems unique to research, development, test, or evaluation activities in a major

engineering/research facility or airborne vehicle in which the system is not part of the facility or

vehicle and does not impact the operation of the facility or vehicle.

 73

Class D: Basic Science/Engineering Design and Research and Technology Software

a. Definitions:

1. Basic Science/Engineering Design includes:

(a) Ground software that performs secondary science data analysis;

(b) Ground software tools that support engineering development;

(c) Ground software or software tools used for informal testing of software systems;

(d) Ground software tools that support mission planning or formulation;

(e) Ground software that operates a research, development, test, or evaluation laboratory (i.e., not

a major engineering/research facility); or

(f) Ground software that provides decision support for non-mission critical situations.

2. Airborne Vehicle Systems include:

(a) Software whose anomalous behavior would cause or contribute to a failure of system function

resulting in a minor failure condition for the airborne vehicle (e.g., DO-178C, Software

Considerations in Airborne Systems and Equipment Certification, “Class D”);

(b) Software whose anomalous behavior would cause or contribute to a failure of system function

with no effect on airborne vehicle operational capability or pilot workload (e.g., DO-178C, “Class

E”); or

(c) Ground software tools that perform research associated with airborne vehicles or systems.

3. Major Engineering/Research Facility related software includes research software that executes

in a major engineering/research facility but is independent of the operation of the facility.

b. Examples:

Examples of Class D software include, but are not limited to:

1. Basic Science and Engineering Design:

Engineering design and modeling tools (e.g., computer-aided design and computer-aided

manufacturing (CAD/CAM), thermal/structural analysis tools); project assurance databases (e.g.,

problem reporting, analysis, and corrective action system, requirements management databases);

propulsion integrated design tools; integrated build management systems; inventory management

tools; probabilistic engineering analysis tools; test stand data analysis tools; test stand engineering

support tools; experimental flight displays evaluated in a flight simulator; forecasts and

assimilated data products; and tools used to develop design reference missions to support early

mission planning.

 74

2. Airborne Vehicles:

Software tools for designing advanced human-automation systems; experimental synthetic-vision

display; and cloud-aerosol light detection and ranging installed on an aeronautics vehicle; flight

software for physically constrained UAVs such as UAVs on tethers, within cages, or used in

indoor labs; and experimental UAV payloads with minor consequences of failure.

c. Exclusions:

Class D does not include:

1. Software that can impact primary or secondary mission objectives or cause loss of data that is

generated by space systems;

2. Software that operates a major engineering/research facility;

3. Software that operates an airborne vehicle; or

4. Flight software (i.e., software that meets the flight portions of Class A, B, or C Software

Classifications).

 75

Class E: Design Concept, Research, Technology, and General Purpose Software

a. Definitions:

1. Software developed to explore a design concept or hypothesis but not used to make decisions

for an operational Class A, B, or C system or a to-be-built Class A, B, or C system.

2. Software used to perform minor analyses of science or experimental data.

3. A defect in Class E software may affect the productivity of a single user or small group of users

but generally will not affect mission objectives or system safety. Class E software cannot be

safety-critical software. If the software is classified as safety-critical software, then it has to be

classified as Class D or higher.

4. Class E software runs in a general-purpose computing environment or a board top environment.

Class E software does not support ground tests, flight tests, or operations.

b. Examples:

Examples of Class E software include, but are not limited to, parametric models to estimate

performance or other attributes of design concepts; software to explore correlations between data

sets; line of code counters; file format converters; and document template builders. Class E can

include prototypes of flight and ground systems, developed at minimal cost, in the spirit of

“exploring a design concept.” Once the design concept is demonstrated, and a program agrees to

incorporate it for flight or ground operational use, or for an in-flight test of the technology, then

the software should be upgraded to its appropriate classification, based on the operational (or in-

flight test) use case. Class E software includes, but is not limited to, software such as word

processing applications, spreadsheet applications, and presentation applications.

c. Exclusions:

Class E does not include:

1. Flight systems (i.e., software that meets the flight portions of Class A, B, C, or D Software

Classifications);

2. Software developed by or for NASA to directly support an operational system (e.g., human-

rated space system, robotics spacecraft, space instrument, airborne vehicle, major

engineering/research facility, mission support facility, and primary/major science data collection

storage and distribution systems);

3. Software developed by or for NASA to be flight qualified to support an operational system;

4. Software that directly affects primary or secondary mission objectives;

5. Software that can adversely affect the integrity of engineering/scientific artifacts;

 76

6. Software used in technical decisions concerning operational systems, or systems being

developed for operation;

7. Software that has an impact on operational vehicles; or

8. Software that is safety-critical.

 77

Business and Information Technology Infrastructure Software

Class F: General Purpose Computing, Business, and IT Software

a. Definition:

General purpose computing Business and IT software used in support of the Agency, multiple

Centers, multiple programs/projects, single Centers/projects, or locally deployed General Purpose

Infrastructure To-Be Component of the NASA Enterprise Architecture. These software

applications are generally used to support voice, wide-area network, local area network, video,

data centers, cloud computing, information management, business and IT application services

(e.g., Finance, Logistics, Human Capital, Procurement), messaging and collaboration, and public

Web. A defect in Class F software is likely to affect the productivity of multiple users across a

single geographic location or several geographic locations and may affect mission objectives or

system safety. Mission objectives can be cost, schedule, or technical objectives for any work that

the Agency or a Center performs.

b. Examples:

Examples of Class F software include, but are not limited to, Agency-wide enterprise applications

(e.g., WebTADS, SAP, CONCURGov, ePayroll, Business Warehouse), Center-specific software,

or specific Web applications, including mobile applications; Agency-wide educational outreach

software; software in support of the NASA-wide area network; and the NASA Web portal.

 78

Appendix E. References

a. CMMI® Development V2.0 model, see https://cmmiinstitute.com/.

b. CMU/SEI-2010-TR-033 CMMI® for Development, Version 1.3 Software Engineering

Institute, Carnegie Mellon University, 2010. See https://cmmiinstitute.com/.

c. DO-178C, Software Considerations in Airborne Systems and Equipment Certification.

d. FAR 52.212-4, Contract Terms and Conditions - Commercial Items.

e. FAR 2005-014, Federal Acquisition Regulation; Smart BUY Pages 61603 – 61605.

f. Federal Information Security Modernization Act of 2014 (FISMA), 44 U.S.C. § 3551,

et seq.

g. Federal Information Technology Acquisition Reform Act (FITARA).

h. Government-Wide, US Government Accountability Office, GAO-14-413.

i. IEEE 828-2012, IEEE Standard for Configuration Management in Systems and

Software Engineering.

j. IEEE 1012, IEEE Standard for Software Verification and Validation,

https://standards.nasa.gov/.

k. IEEE 1028, IEEE Standard for Software Reviews and Audits,

https://standards.nasa.gov/.

l. ISO 5806, Information processing -- Specification of single-hit decision tables.

m. ISO/IEC 2382-20, Information technology–Vocabulary–Part 20: System development,

20.05.05.

n. ISO/IEC 19770-1:2017, Information technology – IT asset management – Part 1: IT

asset management systems—Requirements.

o. ISO/IEC 19770-5:2015, Information technology.

p. ISO/IEC 26514:2008, Systems and software engineering–requirements for designers

and developers of user documentation.

q. ISO/IEC/IEEE 15026-1:2019, Systems and software engineering—Systems and

software assurance—Part 1: Concepts and vocabulary.

r. ISO/IEC/IEEE 24765, Systems and software engineering – Vocabulary.

s. ISO/IEC/IEEE 26513:2017, Systems and software engineering–requirements for testers

and reviewers of information for users.

t. ISO/IEC/IEEE 29119-4:2015, Software and systems engineering -- Software testing --

Part 4: Test techniques.

u. ISO/IEC 15939, Systems and Software Engineering—Measurement Process.

v. ISO/IEC 19770, International Standards for Software Asset Management Processes.

w. ISO/IEC 24765, Systems and Software Engineering – Vocabulary.

x. NASA-STD-3001, Volumes I-II, Space Flight Human System Standard.

y. NASA-STD-7009, Standard for Models and Simulations, https://standards.nasa.gov/.

z. NASA-STD-8739.9, Software Formal Inspection Standard, https://standards.nasa.gov/.

aa. NASA FAR Supplement 1852.227-86, Commercial Computer Software License in

software agreements.

bb. NASA Guidelines for Use of IT Contracts for Supporting End User Services (Update to

MFR#137 and MFR#7).

cc. NASA IV&V Management System,

https://www.nasa.gov/centers/ivv/ims/home/index.html.

dd. NASA Software Engineering Website, https://nen.nasa.gov/web/software.

http://shop.ieee.org/ieeestore/
https://standards.nasa.gov/
https://standards.nasa.gov/

 79

ee. NASA Software Process Across NASA (SPAN) Website,

https://nen.nasa.gov/web/software/wiki.

ff. NASA/SP-2010-3403, NASA Scheduling Management Handbook.

gg. NASA-HDBK-4008, Programmable Logic Devices (PLD) Handbook,

https://standards.nasa.gov/.

hh. NASA-HDBK-7009, NASA Handbook for Models and Simulations: An

Implementation Guide for NASA-STD-7009, https://standards.nasa.gov/.

ii. NFS 1813.301-79, Supporting Federal Policies, Regulations, and NASA Procedural

Requirements.

jj. NFS 1852.237-72, Access to Sensitive Information.

kk. NFS 1852.237-73 Release of Sensitive Information.

ll. NIST 800-146, Cloud Computing Synopsis and Recommendations.

mm. NIST 800-37, Risk Management Framework.

nn. NIST 800-53, Security and Privacy Controls for Federal Information Systems and

Organizations.

oo. NPD 1200.1, NASA Internal Control.

pp. NPD 2540.1, Personal Use of Government Office Equipment Including Information

Technology, https://nodis3.gsfc.nasa.gov/.

qq. NPD 2810.1, NASA Information Security Policy.

rr. NPR 2190.1, NASA Export Control Program, https://nodis3.gsfc.nasa.gov/.

ss. NPR 2210.1, Release of NASA Software, https://nodis3.gsfc.nasa.gov/.

tt. NPR 2830.1, NASA Enterprise Architecture Procedures, https://nodis3.gsfc.nasa.gov/.

uu. NPR 2841.1, Identity, Credential, and Access Management,

https://nodis3.gsfc.nasa.gov/.

vv. NPR 7120.7, NASA Information Technology Program and Project Management

Requirements.

ww. NPR 7120.10, Technical Standards for NASA Programs and Projects,

https://nodis3.gsfc.nasa.gov/.

xx. NPR 7120.11, Health and Medical Technical Authority Implementation.

yy. NPR 7123.1, NASA Systems Engineering Processes and Requirements.

zz. NPR 8000.4, Agency Risk Management Procedural Requirements.

aaa. NPR 8735.2, Management of Government Quality Assurance Functions for NASA

Contracts.

bbb. NPR 9250.1, Capital Asset Identification and Treatment, https://nodis3.gsfc.nasa.gov/.

ccc. NTRS ID 20160005787, “Quality Attributes for Mission Flight Software: A Reference

for Architects.”

ddd. OMB Memo M-04-08, “Maximizing Use of SmartBuy and Avoiding Duplication

Agency Activities with the President’s 24 E-Gov Initiatives.”

eee. OMB Memo M-04-16, “Software Acquisition.”

fff. OMB Memo M-15-14, “Management and Oversight of Federal Information

Technology.”

ggg. OMB Memo M-16-12, “Category Management Policy 16-1: Improving the Acquisition

and Management of Common Information Technology: Software Licensing.”

